
CoCoST: Automatic Complex Code Generation
with Online Searching and Correctness Testing

Xinyi He1* Jiaru Zou2* Yun Lin3* Mengyu Zhou4† Shi Han 4 Zejian Yuan1 Dongmei Zhang4

1 Xi’an Jiaotong University 2 University of Illinois at Urbana-Champaign
3 Peking University 4 Microsoft Research

hxyhxy@stu.xjtu.edu.cn, linyun@stu.pku.edu.cn, jiaruz2@illinois.edu,
yuan.ze.jian@xjtu.edu.cn, {mezho, shihan, dongmeiz}@microsoft.com

Abstract

Large Language Models have revolutionized
code generation ability by converting natu-
ral language descriptions into executable code.
However, generating complex code within real-
world scenarios remains challenging due to in-
tricate structures, subtle bugs, understanding of
advanced data types, and lack of supplementary
contents. To address these challenges, we intro-
duce the CoCoST framework, which enhances
complex code generation by online searching
for more information with planned queries and
correctness testing for code refinement. More-
over, CoCoST serializes the complex inputs
and outputs to improve comprehension and gen-
erates test cases to ensure the adaptability for
real-world applications. CoCoST is validated
through rigorous experiments on the DS-1000
and ClassEval datasets. Experimental results
show that CoCoST substantially improves the
quality of complex code generation, highlight-
ing its potential to enhance the practicality of
LLMs in generating complex code.

1 Introduction

Automatic code generation from natural language
descriptions is becoming more realistic, as large
language models (LLMs) show their potential to
generate accurate code (Li et al., 2023; Luo et al.,
2023; Rozière et al., 2024). Various methods have
been proposed to improve the quality of LLM
code generation, such as retrieving offline docu-
ments (Zhou et al., 2023; Jiang et al., 2023) and de-
bugging generated code (Zhang et al., 2023; Chen
et al., 2023). However, complex code generation
is a more difficult task, which involves intricate
problem description, sophisticated code logic, and
advanced data types (Lai et al., 2022; Du et al.,

* The contributions by Xinyi He, Jiaru Zou and Yun Lin
have been conducted and completed during their internships
at Microsoft.

† Corresponding author.

2023; He et al., 2023). The existing methods strug-
gle to address the arising challenges:

Challenge 1: Offline documents cannot meet the
diverse demands of code generation. In real-world
scenarios, these demands often exceed the capa-
bilities of limited offline documents. For example,
problem descriptions may involve functions that
are not covered by pre-collected documents. Addi-
tionally, complex code generation for diverse needs
often entails highly complex logic and a series
of transformation functions like the programming
problem in Figure 1, where simple API examples
in documents fail to provide adequate guidance.

Challenge 2: In real-world situations, there is
often a shortage of test cases (e.g., test cases in
Figure 1) for automatic code generation. Most
existing work depends heavily on pre-existing test
cases in datasets (Zhang et al., 2023; Jiang et al.,
2023), which are difficult to acquire directly in
practical scenarios.

Challenge 3: Hidden bugs in complex code re-
quire meticulous identification and refinement. Cur-
rent techniques frequently enhance code by analyz-
ing execution errors (Zhang et al., 2023; Jiang et al.,
2023). But in the case of complex code, the exe-
cutable code sometimes contains hidden bugs like
the highlighted part of the initial code in Figure 1.

To address these challenges, we introduce a new
code generation framework named CoCoST1 (Au-
tomatic Complex Code Generation with Online
Searching and Correctness Testing) that improves
the generation and refinement of complex code by
LLMs through the planned online searching and
automatic correctness testing steps. The intuition
of CoCoST is straightforward: During the coding
process, most human developers are not bothered
by the above challenges, as illustrated in Figure 1.
Developers can easily overcome these obstacles by

1The code will be open-sourced on
https://github.com/microsoft/CoCoST.

mailto:hxyhxy@stu.xjtu.edu.cn
mailto:linyun@stu.pku.edu.cn
mailto:jiaruz2@illinois.edu
yuan.ze.jian@xjtu.edu.cn
mailto:mezho@microsoft.com
mailto:shihan@microsoft.com
mailto:dongmeiz@microsoft.com

I am building a custom metric to measure the accuracy
of one class in my multi-class dataset during training. I
am having trouble selecting the class.
The targets are one hot. I have 10 classes in total, so I
need a n*10 tensor as a result. Now I have a list of
integers, how to get a tensor like:

[[0 1 1 1 1 1 1 1 1 1]
[1 1 1 1 1 1 0 1 1 1]

…
[1 1 0 1 1 1 1 1 1 1]]

Problem Description

Developer Online Search Initial Code

tensor = tf.zeros((len(labels), 10), dtype=tf.int32)

indices = tf.constant([[i, label] for i, label in
enumerate(labels)])

updates = tf.ones(len(labels), dtype=tf.int32)

result = tf.tensor_scatter_nd_update(tensor,
indices, updates)

Initial Code

Test

Refine with
Correctness Testing

case1:```python labels = [0, 6, 5, 4, 2]```
case2: …

Test Cases

Search Result
This scatter operation would look like this:
>>> tensor = [[1, 1], [1, 1], [1, 1]] # tf.rank(tensor) == 2
>>> indices = [[0, 1], [2, 0]] # num_updates == 2, index_depth == 2
>>> updates = [5, 10] # num_updates == 2
>>> print(tf.tensor_scatter_nd_update(tensor, indices, updates))

output1:tf.Tensor([[1 0 0 0 0 0 0 0 0
0] …], shape=(5, 10), dtype=int32)
output2: …

Output Result

Final Code

tensor = tf.ones((len(labels), 10), dtype=tf.int32)

indices = tf.constant([[i, label] for i, label in
enumerate(labels)])

updates = tf.zeros(len(labels), dtype=tf.int32)

result = tf.tensor_scatter_nd_update(tensor, indices,
updates)

Final Code

Figure 1: An Example of the Human Developer Code-writing Process Imitated by the CoCoST. After the problem is
received, an online search is performed to simulate search results and create an initial version of the code. Test cases
are then generated, and the code is executed to produce output results. The code is refined based on the correctness
of these results.

searching online through engines (e.g., Google and
Bing) for solutions, experiences, and guidelines.
In addition, they can create test cases and execute
code to ensure the correctness of the code logic.

To address Challenge 1, CoCoST proposes an
online search methodology. This process involves
querying web search engines and then extracting
pertinent information to construct LLM prompts.
The approach presents several benefits: (1) Retriev-
ing information from the up-to-date blogs or Q&A
platforms, such as StackOverflow, facilitates the
emulation of commonly used code patterns, thereby
reducing the complexity of generated code. (2)
Online search extends beyond the scope of static
offline documentation, covering a wider range of
problems without being confined to a predeter-
mined set. Meanwhile, it reduces the effort devel-
opers need to expend in assembling documentation,
thereby increasing the framework’s level of automa-
tion. Using problem descriptions as search queries
can be difficult, because problems are generally in-
tricate and include several components. Therefore,
we propose an online search with query genera-
tion through planning.

To address Challenge 2, we introduce genera-
tion of test cases during refinement. Several stud-
ies (Chen et al., 2022; Shinn et al., 2023) have
attempted to generate tests. However, these meth-
ods often fall short when applied to the generation
of complex code due to its intricate logic and out-
puts, which complicate the direct production of
accurate tests (both the inputs and expected outputs

for the solution code). CoCoST utilizes LLMs to
automatically generate test cases (the inputs for the
code). This strategy cleverly focuses on generating
test cases without attempting to produce complete
tests. It significantly simplifies the process of test
case generation and facilitates its precise creation
for complex code.

To address Challenge 3, this work prioritizes cor-
rectness testing in refinement. During the refine-
ment process, it is more critical to verify that the
executed code produces the correct results rather
than just checking the existence of the errors. Co-
CoST incorporates both the execution output re-
sults and the errors within the refinement prompts
for LLMs to enhance the correctness. Moreover,
during refinement, sophisticated data types and
structures (within complex code itself, its inputs,
and its execution results) are challenging for LLMs
to understand, e.g., large Pandas DataFrames, and
Matplotlib charts. Thus, CoCoST proposes serial-
ization of input and output to convert them into
understandable sequences before being processed
by LLMs. Particularly those are excessively long
or non-textual modalities.

We evaluated the effectiveness of CoCoST on
two complex code generation datasets (DS-1000
and ClassEval). Compared with the existing state-
of-the-art (SOTA) baseline, we achieve a 7.8% im-
provement on DS-1000 and an average of 9.47%
on ClassEval.Moreover, we analyze and discover
that CoCoST requires models to have different ca-
pabilities such as planning, which vary according

to the complexity of the problem. In summary, our
main contributions are as follows.

• We propose the novel CoCoST framework to
generate complex code. CoCoST can be auto-
matic in real-world scenarios.

• To generate complex code, we designed an on-
line search method (query generation) in code
generation for the first time to our knowledge.

• To refine hidden bugs in complex code, we pri-
oritize correctness testing in refinement with
test case generation and serialization of input
and output data types.

• We conducted experiments on the DS-1000
and ClassEval datasets to demonstrate the ef-
fectiveness and universality of CoCoST.

2 Related Work

Code generation datasets. The realm of au-
tomated code generation has been propelled by
benchmark datasets such as HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), and
APPS (Hendrycks et al., 2021), which assess the
proficiency of language models in generating ex-
ecutable code from descriptions. These datasets
encompass a variety of programming problems,
yet recent studies have sought to escalate the com-
plexity of code generation tasks. Works like DS-
1000 (Lai et al., 2022), ClassEval (Du et al., 2023)
and Text2Analysis (He et al., 2023) have intro-
duced datasets targeting specialized domains, in-
cluding data science, object-oriented class genera-
tion, and data analysis. These endeavors reflect an
emerging trend towards enhancing models’ abili-
ties to produce sophisticated and domain-specific
code structures. In this paper, we select datasets
with complex code generation to evaluate CoCoST.

Retrieval-augmented code generation. With
the emergence of Large Language Models
(LLMs), a variety of retrieval-augmented tech-
niques have been developed to compensate for
issues such as the inherent knowledge limita-
tions. DocPrompt (Zhou et al., 2023) and SELVE-
VOLVE (Jiang et al., 2023) leverage document
libraries or models as knowledge bases to im-
prove code generation. However, their reliance
on fixed document libraries limits the scope of in-
formation they can provide and confines the gen-
erated code to the context of these libraries. Fur-

thermore, the prerequisite of preestablished docu-
ment libraries prevents these approaches from be-
ing fully autonomous in real-world frameworks.
Solutions such as WebGPT (Nakano et al., 2022),
LaMDA (Thoppilan et al., 2022), and Fresh-
LLMs (Vu et al., 2023) enhance the performance
of natural language tasks by using online search or
open web knowledge. However, because complex
code generation often involves multiple steps and
complexities, these methods struggle with direct
application to complex code generation.

Code refinement. Refine iteratively enhances
generated code for greater precision. Self-
Debug (Chen et al., 2023), SELFEVOLVE (Jiang
et al., 2023), and Self-Edit (Zhang et al., 2023)
improve code generation by refining code through
the resolution of errors identified during execution.
These methods effectively address errors, while
when it comes to complex code generation, subtle
bugs also play a significant role in the overall error
landscape. Moreover, relying on pre-existing tests
from datasets in refinement limits their autonomy in
real-world applications, where such tests may not
be readily available. CodeT (Chen et al., 2022), Re-
flexion (Shinn et al., 2023), and CODECHAIN (Le
et al., 2023) seek to strengthen code generation by
creating tests. But the tests they generate include
not only the inputs for the solution code but also
the expected outputs. This poses a substantial chal-
lenge for complex code generation, where the logic
can be intricate and certain problems may not lend
to straightforward ground truth generation.

3 Methodology

The code generation task involves predicting a solu-
tion code W given a problem description D. When
given an input i, the execution of code W produces
an output result o and a potential error e, where
both o and e can be empty ∅. The generated codes
are evaluated against a set of test cases and ground
truth {(tj , gj)}Jj=1. The correctness of the code W
is determined by verifying oj = gj ∧ ej = ∅ when
all ij = tj , j ∈ {1, . . . , J}.

In this work, we adopt a two-step approach for
code generation, mirroring the way humans write
code. The first step is retrieval, where relevant
information is obtained through an online search
and utilized by LLMs to generate initial code. The
second step is refinement, where the initial code is
refined based on the execution results, leading to
the generation of the final version of the code.

LLM
PLANS
1. Iterate over each column in the DataFrame.
2. For each column, calculate the value counts.
3. …

Plans & Queries Online Search

Step 1: Retrieve with Online Searching

QUERIES
1. No need to search.
2. Need to search, <search> pandas calculate

value counts for each column </search>
3. …

..

…

ndarray.max(axis=None, out=None,
keepdims=False, initial=<no value>,
where=True)

Return the maximum…

Document Info

pandas.DataFrame.apply#...
DataFrame.apply(_func_ ,
_axis …
…

Document Info

StackOverflow title: …
StackOverflow question:…
StackOverflow top answers:…
…

QA Info

Query N…
Query 2… Query 1… …

Step 2: Refine with Correctness Testing

Situation 1: Output & Serialize

Situation2: Error & Online Search

NumPy Array: (16 x 5),
…
Min: 0.00, Max: 1.00.

Serialized content

NumPy Array: (16 x 5),
…
Min: 0.00, Max: 1.00.

Serialized content

array([[0. 1. 0. 0. 0.] …])array([[0. 1. 0. 0. 0.] …])

Generated
Test Cases

Interpreter
Codepython Pandas TypeError…

python Numpy TypeError: int()…

Problem
Description

LLM

LLM

LLM

Figure 2: The Pipline of CoCoST. Step 1: LLM is employed to strategize the Problem and formulate queries based
on the outlined steps. These queries enable the retrieval of diverse information from the internet. A high-quality
initial code can be obtained through effective planning and leveraging internet information. Step 2: LLM generates
test cases for testing the initial code. The test results serve as crucial inputs for the subsequent cycle of code
refinement. Through iterative refinement processes, the quality of the initial code can be significantly improved.

3.1 Retrieval

The difficulty in achieving effective online retrieval
lies in formulating optimal search queries. On the
one hand, for complex code generation, the prob-
lems are intricate and may involve multiple chal-
lenges. Directly searching for solutions to such
problems is inaccurate and difficult. On the other
hand, it is challenging that match queries directly
through methods for offline documents like similar-
ity calculations, due to the nature of online libraries.
So we propose generating queries through planning
to solve the challenge.

The retrieval process is divided into three steps:
1. Search queries Q = {q1, . . . , qN} are generated
through planning. 2. Conducting online searches
using these queries to obtain relevant background
information INFO = {info1, . . . , infoM}. 3.
The initial code W0 is generated by the LLMs θ
with the information obtained INFO:

Ŵ0 ∼ pθ(.|D, INFO) (1)

3.1.1 Generation Query through Planning
To generate more targeted queries, we initiate the
process by using LLMs to do planning regard-
ing the given problem. The planning phase in-
volves outlining the natural language steps P =
{plan1, . . . , planN} required to address the prob-
lem. Later, the assessment involves utilizing LLMs
to determine whether each planning step requires
an online search. Subsequently, the planning steps

identified as necessitating online search are trans-
lated into queries Q = {q1, . . . , qN} for use in the
subsequent search process.

P̂ , Q̂ ∼ pθ(.|D) (2)

3.1.2 Online Search
For the above-generated queries, we conduct an
online search. In this study, we use the online
search API2 for the search process as Equation (3).
CoCoST can also be applied to private or domain-
specific knowledge repositories as long as they are
accessible via query, with details in §A.

{url1, . . . , urlNu} = search(qj), j ∈ {1, . . . , Nq} (3)

where, Nq is the number of queries for the prob-
lem, Nu is the number of urls for one query. In this
study, we use Nq = 1 , Nu = 1.

Through the analysis of the website distribution
Table 4, we observed that more than 90% of the
URLs are concentrated on a total of 8 websites.
Specific extraction rules are established for promi-
nent websites such as StackOverflow to extract key
information, facilitating a more comprehensive un-
derstanding of the website’s content by subsequent
models. Generic extraction rules are employed for
extracting key information from other websites.

infoj,k = extract(urlk), k ∈ {1, . . . , Nu}

2https://github.com/Nv7-GitHub/googlesearch

The information INFO is composed of details
from each query qj , each URL urlk, with each
piece of information infoj,k extracted.

3.2 Refinement
Existing work (Chen et al., 2023; Jiang et al., 2023)
typically emphasizes the correctness of errors iden-
tified during the refinement process. However, we
observe that refining code that produces error-free
outputs is equally crucial during the refinement pro-
cess. Therefore, we introduce correctness testing in
§3.2.1. Additionally, we propose methods for the
generation of test cases and serialization of inputs
and outputs during the refinement process.

3.2.1 Correctness Testing
Correctness testing refers to the refinement of gen-
erated code based on correctness, determined by
analyzing errors and output results obtained during
code execution. In the context of complex code
generation, the intricate logic of the code makes it
challenging for the LLMs to consider every detail
during code generation, and precisely ascertain the
results obtained at each step of the execution pro-
cess. Consequently, some code may be executed
without errors, producing output results that do not
align with what is expected. Incorporating both
the error and the output result into the refinement
process allows the model to take advantage of self-
correction mechanisms.

ej,k, oj,k = execute(Wj , ik), j ∈ {1, . . . , Nf}
INFOej,k = {ej,k, extract(search(ej,k))}

Ŵj+1 ∼ pθ(.|D,Wj , {Si, Soj , INFOej}k),
k ∈ {1, . . . , Ni}

where, Nf is the total number of refinement steps,
Ni is the number of inputs. iK is the k-th input for
the problem from Equation (4), Si and Soj is the
serialization of input and output from Equation (5).

3.2.2 Generation of Test Cases
Test cases are crucial, as they serve as indispensable
inputs for the code execution in refinement. While,
existing works in refining code predominantly rely
on pre-existing test cases in datasets (Zhang et al.,
2023; Jiang et al., 2023), which are challenging to
obtain directly in real-world scenarios. Moreover,
some existing work (Chen et al., 2023) even uses
the ground truth output of the test case to refine
the code, which is even more challenging to obtain
for complex code problems in real-world scenar-
ios. Because their problems involve various logical

operations, deriving answers directly without code-
based computations is demanding.

CoCoST introduces a generation of test cases
with LLMs to adapt to real-world scenarios.{

Î ∼ pθ(.|D)
I = {i1, . . . , iNi}

(4)

3.2.3 Serialization of Input and Output
Serialization of input and output makes them more
intuitive and understandable for the model. For
complex code, some inputs and outputs are intri-
cate, such as Pandas DataFrames, PyTorch tensors,
and Matplotlib PNG images. Understanding such
inputs and outputs poses challenges for LLMs due
to large matrices, image modalities, and so on.

In this study, we serialize common data struc-
tures in Python as follows:
1. For NumPy arrays, Pandas DataFrames, PyTorch
tensors, and TensorFlow tensors, the serialization
includes data truncated string, data type, data shape,
and statistical information.
2. For image structures (such as PNG images gen-
erated by the Matplotlib library), we serialize them
into SVG (Scalable Vector Graphics) format for
LLMs to comprehend.

Sn = serialize(n), n ∈ {ik, oj,k} (5)

4 Experiment

4.1 Experiment Setup
4.1.1 Datasets
We conduct experiences on two complex code-
generation datasets:

DS-1000 (Lai et al., 2022): DS-1000 is a code
generation benchmark with a thousand data science
questions spanning seven Python libraries. The
complexity of this dataset is manifested in two as-
pects. First, complexity arises from intricate logical
reasoning required during code generation due to
the complex nature of the problems. For exam-
ple, on the DS-1000 dataset, the average length of
problem descriptions is 140 words, whereas other
commonly used code generation datasets such as
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) have lengths of 23 and 15.7 words,
respectively. Secondly, the input-output involves
various complex data structures related to data sci-
ence, making the code logic intricate during trans-
formations of the data. Further details of DS-1000
implementation are shown in §B.1.

ClassEval (Du et al., 2023): ClassEval is the
first class-level Python code generation benchmark

Table 1: Main Results and Ablation Study for DS-1000. The base model for CoCoST is GPT-4. All metrics are
represented as percentages. For each metric, the bold number indicates the highest performance.

Method
Perturbation

Total/Avg.Origin Surface Semantic Diff-Rewrite

Codex 44.93 37.94 34.35 16.94 39.20
DocPrompting 53.95 50.00 38.39 21.05 43.30
Self-Debugging 63.38 59.21 45.65 28.40 53.00
SELFEVOLVE 66.23 67.11 48.70 33.95 57.10
Reflexion 58.99 73.03 52.17 48.77 57.90

CoCoST 71.71 74.34 66.96 53.09 68.00
w/o refinement of output 68.42 69.74 62.61 48.77 64.10
w/o refinement of error 68.20 73.03 62.61 49.38 64.60
w/o serialization 70.18 75.00 65.22 51.23 66.70
w/o generation of test case 66.23 71.05 59.57 45.68 62.10
w/o online retrieval 68.64 70.39 60.00 51.23 64.10
w/o all (GPT-4 only) 64.47 69.74 56.96 43.83 60.20

designed to evaluate code generation models’ per-
formance on a diverse set of object-oriented pro-
gramming tasks. The dataset comprises a curated
collection of 100 tasks. These tasks cover a wide
range of concepts, including inheritance, polymor-
phism, encapsulation, etc. Each coding task is in
the format of the class skeleton, outlining the tar-
get method description inside the class. The com-
plexity of this dataset resides in its abstraction and
hierarchical class structure. Tested models must
generate large-scale code units and establish con-
nections between each target method within the
entire class, rather than focusing solely on individ-
ual functions.

The dataset provides two prompt designs for
LLMs with or without IF ability. In our experi-
ments, we employ the class skeleton as the prompt
for GPT-based models, a system prompt along with
task instructions for the WizardCoder.

4.1.2 Evaluation
We employ the same evaluation methodology as the
original datasets for both DS-1000 and ClassEval.

DS-1000. We follow the original dataset using
Pass@1 accuracy. This evaluation is conducted
across total and perturbations: Origin, Surface, Se-
mantic, and Diff-Rewrite.

ClassEval. We follow the original dataset using
Pass@K metric. We calculate both class-leval and
method-level Pass@K with K = 1, 3, 5.

4.1.3 Base LLMs
This work primarily utilizes the GPT (OpenAI,
2023) series as the LLM base model to validate
the effectiveness of the framework. GPT-4 is uti-
lized in gpt-4-32k-0613 version, while GPT-3.5 is

utilized in the gpt-35-turbo-16k-0613 version. To
further investigate the performance of CoCoST on
both open-source and specialized code generation
models, we have also employed WizardCoder (Luo
et al., 2023) as a base model with WizardCoder-
Python-13B-V1.0 version.

4.1.4 Baselines
For the DS-1000, we selected four LLM-based
frameworks as baselines: DocPrompt (Zhou et al.,
2023), Self-Debugging (Chen et al., 2023), SELF-
EVOLVE (Jiang et al., 2023) and Reflexion (Shinn
et al., 2023). DocPrompting enhances the LLM by
employing a fine-tuned retriever to fetch problem-
relevant documentation from offline document
pools. Self-debugging depends on a Python in-
terpreter to instruct language models in revising
Python code containing errors. SELFEVOLVE
employs LLMs as both sources of knowledge and
self-reflective programmers. Reflexion utilizes re-
flective feedback with generated tests and episodic
memory to process task feedback. Details are
shown in §B.3.

For the ClassEval, we select five LLM-based
code generation models and frameworks as base-
lines: Instruct-CodeGen3, SantaCoder (Allal et al.,
2023), Instruct-StarCoder4, WizardCoder (Luo
et al., 2023) and Reflexion (Shinn et al., 2023).

4.2 Main Results
Regarding the DS-1000 dataset, the main results
are shown in Table 1. CoCoST surpasses the cur-
rent SOTA framework, SELFEVOLVE, by 10.9%,

3https://huggingface.co/sahil2801/instruct-codegen-16B
4https://huggingface.co/GeorgiaTechResearchInstitute/

starcoder-gpteacher-code-instruct

Table 2: Main Results and Ablation Study for ClassEval. All metric numbers are represented as percentages. For
each metric, the bold number indicates the highest performance.

Method
Class-level Method-level

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Instruct-StarCoder 10.2 12.7 14.0 23.1 26.5 27.7
SantaCoder 8.6 9.9 10.0 27.7 33.0 34.9
Instruct-CodGen 8.2 12.3 13.0 24.9 34.3 37.1
WizardCoder 12.2 20.0 23.0 35.2 47.1 51.1
Reflexion 24.1 30.7 35.2 43.4 51.6 61.8

CoCoST 46.3 49.5 52.8 67.9 72.5 77.6
w/o refinement of output 43.5 46.8 51.4 66.4 69.0 73.4
w/o refinement of error 46.2 49.5 51.7 67.9 72.5 77.2
w/o generation of test case 42.7 47.9 50.6 65.9 70.8 72.4
w/o online retrieval 37.2 42.5 44.9 60.4 65.7 69.8
w/o all (GPT-4 only) 36.2 39.3 43.5 58.6 64.9 67.3

establishing itself as the new SOTA. Especially un-
der the Diff-Rewrite perturbation setting, CoCoST
exceeds SELFEVOLVE by 19.95%, which demon-
strates the effectiveness of CoCoST in generating
complex code. CoCoST employs online search and
correctness testing to allow the model to imitate ex-
isting code patterns, thereby reducing the difficulty
of generating new code and refining the details to
further enhance the correctness of the code.

For the ClassEval dataset, the results are shown
in Table 2. Our experiments demonstrate that Co-
CoST has an overall higher performance on both
class-level and method-level Pass@K evaluation.
Specifically, CoCoST outperforms the Reflexion
(best baseline model) significantly by an average of
19.5% and 20.4% on the Class and Method level.

4.3 Ablation Study

In this work, to validate the effectiveness of Co-
CoST, we conduct different ablation studies, with
results presented in Table 1 and 2. Details on the
ablation study are shown in §B.4.

CoCoST significantly enhances the base
model’s ability to generate complex code. Com-
pared to the base model, CoCoST has shown im-
provements of 7.8% on the DS-1000 dataset and
an average of 9.47% on ClassEval, demonstrating
the effectiveness of the CoCoST.

Online search, generation of test cases, and
serialization each contribute to the model’s per-
formance improvements. Compared to CoCoST,
after performing ablation studies, these features
showed a decrease in performance of 3.9%, 5.9%,
and 1.3% respectively on the DS-1000 dataset. The
online search improves the model by providing
common code patterns, which reduces the difficulty
of the model in generating initial code. Serializa-

tion, by converting inputs and outputs into a sequen-
tial format, allows the model to more intuitively
observe inputs and outputs that are too lengthy or
are in non-textual modalities, thereby strengthening
its ability to solve complex code problems.

Online search outperforms offline retrieval
in effectiveness and has a wider range of appli-
cability. As shown in Table 1, using only online
retrieval (the row w/o generation of the test case)
outperforms DocPrompting, which is an offline
retrieval approach. Moreover, in real-world scenar-
ios, as opposed to specific datasets, the types of
problems encountered are more diverse. The scala-
bility of online retrieval enables them to effectively
address a wide range of problems. However, offline
retrieval systems struggle to encompass all relevant
information comprehensively.

During the refinement process, correctness
testing is crucial, meaning that both the output
result and error are equally important. After
separately conducting ablation studies on the out-
put result and error, CoCoST shows a decrease
of 3.9% and 3.4% respectively on the DS-1000
dataset, and an average of 2.7% and 0.3% on the
ClassEval dataset. This indicates that the output
result contributes more to the refinement process
than the error. However, in previous works, the
output result is often overlooked, which should not
be the case, especially in the generation of complex
code. The evidence from the ablation study empha-
sizes the necessity of paying attention to the output
results during the refinement phase to ensure the
generation of high-quality, complex code.

4.4 Analysis of Different Base Models
Performance

Table 3 shows the performance results of CoCoST
on the DS-1000 dataset with different base models.

Table 3: Different Base Models Results for DS-1000 and ClassEval. All metric numbers are represented as
percentages. For each metric in each section, the bold number indicates the highest performance.

Method
DS-1000 ClassEval

Origin Surface Semantic Diff-Rewrite Total/Avg. Class-level Method-level

GPT-4 64.47 69.74 56.96 43.83 60.20 43.5 67.3
+ retrieve 66.23 71.05 59.57 45.68 62.10 50.6 72.4
+ refine 68.64 70.39 60.00 51.23 64.10 44.9 69.8
CoCoST 71.71 74.34 66.96 53.09 68.00 52.8 77.6

GPT-3.5 57.02 43.42 40.00 32.72 47.10 35.4 59.4
+ retrieve 47.15 25.00 36.96 25.31 37.90 41.9 61.7
+ refine 55.70 50.66 44.35 35.80 49.10 42.8 62.3
CoCoST - - - - - 45.8 64.7

WizardCoder 41.01 21.71 31.74 16.05 31.90 23.0 51.1
+ retrieve 15.79 9.21 12.17 9.88 13.00 18.2 41.8
+ refine 39.69 21.71 30.00 15.43 30.80 22.3 50.7

We can see that GPT-4 has been comprehensively
improved with CoCoST, but the performance on
GPT-3.5 and WizardCoder is mixed. This indicates
that CoCoST requires the model to have the follow-
ing capabilities to enhance its performance:

For code generation planning ability, the
higher the complexity of the code that needs
to be generated, the higher the demand for plan-
ning ability. Planning capability is key to online
retrieval; only correct planning can generate appro-
priate queries to retrieve useful information. After
incorporating online retrieval, GPT-3.5 has an in-
crease of 4.75% on ClassEval, yet it decreased by
9.2% on DS-1000 as shown in Table 3. The chal-
lenge of ClassEval lies in how to generate the entire
class and the interrelated functions, but the com-
plexity of individual function codes is not as high
as DS-1000. Thus, the planning ability of GPT-3.5
can handle ClassEval, but it is inferior on DS-1000.

Code generation necessitates models to have
in-context learning abilities. The generated code
should be built on all the above-provided con-
tents, and the understanding of the preceding input
prompt is of great importance in the refinement
stage. In Table 3, it is observed that WizardCoder
has a noticeable drop of 18.9% and 1.1% on the DS-
1000 dataset when utilizing online retrieval and re-
finement respectively. And the overall performance
of WizardCoder is comparatively interior to GPT
models. This could be due to WizardCoder’s lim-
ited in-context learning ability, especially with the
complex and lengthy prompts, hindering accurate
context comprehension and code modification.

4.5 Cascade Analysis
Our framework consists of multiple components
cascaded together, which results in certain interme-

diate steps that cannot be explicitly validated for
effectiveness, as well as the potential generation
of cascading errors. For the former, a discussion
is provided in §4.5.1, while for the latter, an error
analysis is conducted in §4.5.2.

4.5.1 Analysis of Pipeline
Regarding the generation of test cases, to prove
that the generated test cases are comparable to the
ground truth test cases, we substitute the generated
test cases in CoCoST with ground truth test cases
and conduct experiment on the DS-1000 dataset
using GPT-4. The results showed that the per-
formance was 68.70%, only marginally higher by
0.7% compared to the use of generated test cases
(68.00%). This proves that the effects of both are
comparable and that the generated test cases rarely
lead to errors.

Regarding generating plans, we attempt to by-
pass the planning step and directly perform online
retrieval. On the DS-1000 dataset using GPT-4,
this approach results in a performance of 55.70%,
which is 6.4% lower than using planning for on-
line retrieval (62.10%), and even 4.5% lower than
only using GPT-4 to generate code (60.20%). This
confirms that the generated plans are significantly
effective.

4.5.2 Error Analysis
For cascading errors, some errors generated by re-
trieval processes can be corrected through refine-
ment, while others may persist, necessitating fu-
ture improvements. Take DS-1000 as an exam-
ple: Compared to the baseline (GPT-4), we ob-
served that among the instances that turned erro-
neous after retrieval, 39.6% were corrected, while
60.4% remained incorrect. For the former cases,

Problem Description
While nan == nan is always False, in many cases people want to treat them as equal, and this is
enshrined in pandas.DataFrame.equals:
NaNs in the same location are considered equal.
……
Imagine I have a DataFrame which may contain some Nan:

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
0 NaN 6.0 14.0 NaN 5.0 NaN 2.0 12.0 3.0 7.0
1 NaN 6.0 5.0 17.0 NaN NaN 13.0 NaN NaN NaN
……

I just want to know which columns in row 0 and row 8 are different, please present them as pairs
in a list. …

Code before Correctness Testing Refinement
row0 = df.iloc[0]
row8 = df.iloc[8]
diff_cols = row0 != row8
result = list(zip(row0[diff_cols], row8[diff_cols]))

Output Result
[(nan, 18.0), (nan, nan), (nan, nan), (nan, 18.0), (17.0, 16.0), (16.0, nan), (nan, nan), (nan, nan),
(nan, nan), (0.0, nan)]

Code after Correctness Testing Refinement
row0 = df.iloc[0]
row8 = df.iloc[8]
diff_cols = ~(row0.isnull() & row8.isnull()) & (row0 != row8)
result = list(zip(row0[diff_cols], row8[diff_cols]))

Output Result
[(nan, 18.0), (nan, 18.0), (17.0, 16.0), (16.0, nan), (0.0, nan)]

Figure 3: Case Study for Correctness Testing.

it shows that CoCoST can fix some bad cases in
the refinement stage even though the retrieval con-
tents have some errors. For the later cases, we do
observe some cases that are worthy of further re-
search as potential directions for future work. First,
the search content could be more detailed. E.g.,
Some basic steps that LLMs consider unnecessary
to search for are not generating queries, but are
exactly where the bug is in the code. Second, the
search query could be more targeted. The descrip-
tions of some queries are not specific enough in
terms of some complicated problems. Therefore,
more sub-queries are needed to help the model re-
ceive clearer instructions.

Problem Description
I am building a custom metric to measure the accuracy of one class in my multi-class dataset
during training. I am having trouble selecting the class.
The targets are one hot. I have 10 classes in total, so I need a n*10 tensor as a result. Now I have
a list of integers, how to get a tensor like:

[[0 1 1 1 1 1 1 1 1 1]
[1 1 1 1 1 1 0 1 1 1]

…
[1 1 0 1 1 1 1 1 1 1]]

Code without Online Search
labels_tensor = tf.constant(labels)
ones_tensor = tf.ones_like(labels_tensor)
zeros_tensor = tf.zeros_like(labels_tensor)
result = tf.tensor_scatter_nd_update(ones_tensor, tf.reshape(labels_tensor, (-1, 1)), zeros_tensor)

Search Query
tensorflow tensor_scatter_nd_update usage

Search Results
This scatter operation would look like this:
>>> tensor = [[1, 1], [1, 1], [1, 1]] # tf.rank(tensor) == 2
>>> indices = [[0, 1], [2, 0]] # num_updates == 2, index_depth == 2
>>> updates = [5, 10] # num_updates == 2
>>> print(tf.tensor_scatter_nd_update(tensor, indices, updates))

Code with Online Search
tensor = tf.ones((len(labels), 10), dtype=tf.int32)
indices = tf.constant([[i, label] for i, label in enumerate(labels)])
updates = tf.zeros(len(labels), dtype=tf.int32)
result = tf.tensor_scatter_nd_update(tensor, indices, updates)

Figure 4: Case Study for Online Retrieval.

4.6 Case Study

For the case study on online retrieval, refer to Fig-
ure 4. It can be observed that by imitating the usage
of functions found through online search, the model
is better equipped to prepare the required parame-
ters for the functions and to generate corresponding
code. This significantly reduces the difficulty of
generating complex code. For the case study on
correctness testing, refer to Figure 3. It is evident
that, although the initially generated code did not
show obvious errors, the output of the code did
not align with the expected results. The model re-
fines the code based on the output, thus improving
hidden errors and generating the correct code.

5 Conclusion
In this paper, we propose CoCoST, a novel frame-
work for generating complex code in real-world
scenarios by emulating human coding processes
like online searching and test case creation. It ef-
fectively overcomes challenges in code structure
and logic, subtle bug detection, and handling of
complex data. The framework’s innovative use
of online search, planning for query generation,
correctness testing, and input-output serialization
significantly improves code accuracy and model un-
derstanding. Tested on various datasets, CoCoST
outperforms existing methods, demonstrating its
efficacy in real-world code generation tasks.

Limitations

The main limitation of our research is that it has
underlying issues of exceeding the allowed times of
accesses due to multiple calls to the Google Search
API. Similarly, we also have made multiple API
calls to test and enhance the performance of the
GPT models.

Ethics Policy

This research does not pose any ethical concerns.
The datasets and other associated resources utilized
in this study are publicly available and widely used
in various other existing work.

References
Loubna Ben Allal, Raymond Li, Denis Kocetkov,

Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. arXiv
preprint.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. Preprint, arXiv:2304.05128.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classe-
val: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. Preprint,
arXiv:2308.01861.

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma,
Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen,
Shi Han, Zejian Yuan, and Dongmei Zhang. 2023.
Text2analysis: A benchmark of table question an-
swering with advanced data analysis and unclear
queries. Preprint, arXiv:2312.13671.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. Self-
evolve: A code evolution framework via large lan-
guage models. Preprint, arXiv:2306.02907.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation. ArXiv, abs/2211.11501.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul,
Doyen Sahoo, and Shafiq Joty. 2023. Codechain: To-
wards modular code generation through chain of self-
revisions with representative sub-modules. Preprint,
arXiv:2310.08992.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you! Preprint, arXiv:2305.06161.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. Preprint, arXiv:2306.08568.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2022. Webgpt: Browser-
assisted question-answering with human feedback.
Preprint, arXiv:2112.09332.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

https://doi.org/10.48550/ARXIV.2207.10397
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam M. Shazeer, Apoorv Kulshreshtha, Heng-
Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker,
Yu Du, Yaguang Li, Hongrae Lee, Huaixiu Steven
Zheng, Amin Ghafouri, Marcelo Menegali, Yanping
Huang, Maxim Krikun, Dmitry Lepikhin, James
Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen,
Adam Roberts, Maarten Bosma, Yanqi Zhou, Chung-
Ching Chang, I. A. Krivokon, Willard James Rusch,
Marc Pickett, Kathleen S. Meier-Hellstern, Mered-
ith Ringel Morris, Tulsee Doshi, Renelito Delos San-
tos, Toju Duke, Johnny Hartz Søraker, Ben Zeven-
bergen, Vinodkumar Prabhakaran, Mark Díaz, Ben
Hutchinson, Kristen Olson, Alejandra Molina, Erin
Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajaku-
mar, Alena Butryna, Matthew Lamm, V. O. Kuzmina,
Joseph Fenton, Aaron Cohen, Rachel Bernstein, Ray
Kurzweil, Blaise Aguera-Arcas, Claire Cui, Mar-
ian Rogers Croak, Ed Huai hsin Chi, and Quoc Le.
2022. Lamda: Language models for dialog applica-
tions. ArXiv, abs/2201.08239.

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry
Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny
Zhou, Quoc Le, and Thang Luong. 2023. Freshllms:
Refreshing large language models with search engine
augmentation. Preprint, arXiv:2310.03214.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin.
2023. Self-edit: Fault-aware code editor for code
generation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 769–787, Toronto,
Canada. Association for Computational Linguistics.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo
Wang, Zhengbao Jiang, and Graham Neubig. 2023.
Docprompting: Generating code by retrieving the
docs. In International Conference on Learning Rep-
resentations (ICLR), Kigali, Rwanda.

https://api.semanticscholar.org/CorpusID:246063428
https://api.semanticscholar.org/CorpusID:246063428
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2207.05987

A Online Searching Detail

Website Base Station Distributions Table During
the DS-1000 Online Retrieval Process:

Table 4: Website Base Station Distributions Table Dur-
ing the DS-1000 Online Retrieval Process.

Website Proportion

https://stackoverflow.com 57.92%
https://numpy.org 8.59%
https://pandas.pydata.org 5.70%
https://www.geeksforgeeks.org 5.07%
https://docs.scipy.org 4.76%
https://matplotlib.org 3.20%
https://www.tensorflow.org 3.04%
http://scikit-learn.org 2.42%
The Others 9.29%

Moreover, CoCoST can be applied to special-
ized, proprietary, or domain-specific knowledge
repositories as long as they are accessible via
query. Moreover, implementing queries for pri-
vate datasets is easily achievable and a growing
trend in data management. Major companies such
as Google and Microsoft already offer products de-
signed to search private data; for example, Google
Workspace’s Cloud Search provides powerful capa-
bilities for enterprises to search their private data.
In this paper, to validate the effectiveness of our
framework, we conducted tests on public online
searches. Moving forward, the framework can be
applied to an even broader range of knowledge
repositories.

B Experiment

B.1 Datasets Detail

Further details of DS-1000 implementation are as
follows:
• The dataset provides both Insertion and Com-
pletion style prompts, where the data is the same,
differing only in prompt format, thus yielding simi-
lar results. In this paper, experiments are conducted
with the Completion style prompt.
• We implement a filtering approach to prevent
data leakage and model replication of existing so-
lutions from Stack Overflow. The DS-1000 dataset
originates from Stack Overflow, and concurrently,
over 50% of the websites we encountered dur-
ing our online searches are from Stack Overflow.
Thus, to prevent data leakage, when conducting

online searching, we filter out all Stack Overflow
problems belonging to the source of the DS-1000
dataset by using the Stack Overflow question_id.

B.2 Base Models

The parameter details for each model in the experi-
ment are as follows:
• GPT-4: model: gpt-4-32k-0613, temperature: 0,
top_p: 0.95, max_tokens: 1024.
• GPT-3.5: model: gpt-35-turbo-16k-0613, tem-
perature: 0, top_p: 0.95, max_tokens: 1024.
• WizardCoder: WizardCoder-Python-13B-V1.0,
temperature: 0, top_p: 0.95, max_tokens: 1024.

B.3 Baselines Details

• DocPrompt (Zhou et al., 2023): DocPrompting
enhances the LLM by employing a fine-tuned re-
triever to fetch problem-relevant documentation
from offline document pools. The model then con-
ditions on these documents, along with the problem
description, to generate code.
• Self-Debugging (Chen et al., 2023): This ap-
proach depends on a SQL application or Python
interpreter to instruct language models in revising
SQL commands or Python code containing errors.
For the sake of a fair comparison, we utilize its
"simple" variant.
• SELFEVOLVE (Jiang et al., 2023): Employs
LLMs as both sources of knowledge and self-
reflective programmers. During the self-reflective
process, it refines the code by addressing bugs.
• Reflexion (Shinn et al., 2023): Reflexion uti-
lize reflective feedback with generated tests and
episodic memory to process task feedback. For the
sake of a fair comparison, we utilize GPT-4 as base
model and set trail number = 1.

It is worth noting that the test cases involving
the refinement process in the baselines mentioned
above all use the test cases from the dataset desig-
nated for testing. However, within the context of
the real-world scenario of CoCoST, test cases from
the dataset should not be used within the frame-
work. Without these test cases, they are entirely
incapable of functioning.

B.4 Ablation Study Details

• Without refinement of output: During the refine-
ment process, the output result is not refined; that is,
refinement is conducted solely based on the error.
• Without refinement of error: During the refine-
ment process, the error is not refined; that is, re-

Table 5: Table of Main Results for different packages in DS-1000. All metric numbers are represented as percentages.
The bold number indicates the highest performance.

Method Pandas Numpy Matplotlib Tensorflow Scipy Sklearn Pytorch Total/Avg.

CoCoST 59.45 75.91 75.48 71.11 61.32 63.48 77.94 68.00
+ retrieve 51.89 70.91 68.39 66.67 52.83 70.43 60.29 62.10
+ refine 55.67 72.73 74.19 64.44 54.72 60.00 70.59 64.10
GPT-4 only 52.23 70.45 67.74 55.56 50.00 64.35 55.88 60.20

finement is conducted solely based on the output
result.
• Without serialization: During the refinement pro-
cess, the input and output are not serialized; instead,
their printout results are directly used as input.
• Without generation of test cases: Test cases are
not generated. Since refinement cannot be per-
formed without test cases, only online retrieval is
conducted.
• Without online retrieval: Online retrieval is not
performed, and the process is limited to refinement
with correctness testing.

C Experimantal Results

The main results for different packages in DS-1000
are shown in Table 5.
The results indicate that CoCoST shows a more
pronounced effect on libraries whose inputs and
outputs are more complex or more challenging for
LLMs to intuitively understand, such as Matplotlib,
TensorFlow, and PyTorch. On Sklearn, CoCoST
experiences a slight decline due to its test cases con-
taining complex objects, which present a significant
challenge in generating test cases. Consequently,
CoCoST’s performance on Sklearn is not as strong
as with the other libraries.

D Prompts of CoCoST

Plan and Queries Generation Prompt
[System]
Help me with the following problem, You need to write python code to solve the following
problem. Please plan the steps you would need to take and write each step as a query. I can help
you to search for relevant information online, if the query needs to be searchable, mark <search>.
I can help you with google search through which you can search for real time information, python
library document, error reporting information etc.

Please return the queries that need to be searched in google.
+ First, [PLAN] plan the steps you would need to take and write each step as a query. Then,
[SEARCH] list the query from [PLAN] that need to search.
+ You only need to plan that can complete the code snippet. You do not need to plan the codes
before BEGIN SOLUTION block.
+ You can search for real-time information, python library documents, error messages, common
usage, and other information.
+ Don't return duplicate query with similar semantics, return different queries.
+ Don't tag to search simple query that can be solved by yourself, return the most critical queries.
[Example]
…
[User]
<problem description>

Predict
[PLAN]
1. …
…
[SEARCH]
1. No need to search. / <search> … </search>
…

Figure 5: Plan and Queries Generation Prompt on DS-1000.

Plan and Queries Generation Prompt
[System]
Help me with the following problem, You need to write python code to solve the following
problem. Please plan the steps you would need to take and write each step as a query. I can help
you to search for relevant information online, if the query needs to be searchable, mark <search>.
I can help you with google search through which you can search for real time information, python
library document, error reporting information etc.

Please return the queries that need to be searched in google.
+ First, [PLAN] plan the steps you would need to take and write each step as a query. Then,
[SEARCH] list the query from [PLAN] that need to search.
+ You only need to plan that can complete the code snippet. You do not need to plan the codes
before BEGIN SOLUTION block.
+ You can search for real-time information, python library documents, error messages, common
usage, and other information.
+ Don't return duplicate query with similar semantics, return different queries.
+ Don't tag to search simple query that can be solved by yourself, return the most critical queries.

For each problem given, there will be a class with several functions inside you need to write
subsequenct code. Please follow the rules below when you [PLAN] and [SEARCH]:
+ Do not PLAN and SEARCH the function with name: __init__(self), this function has been
initialized for you as the setting of the class.
+ For each function in the class you need to implement, only SEARCH the query that you are
unsure of the implementation.
+ For each function in the class you need to implement, you must limit the search up to 3 queries.
[Example]
…
[User]
<problem description>

Predict
[PLAN]
1. Function: …
1.1 …
[SEARCH]
1. Function: …
1.1 No need to search. / <search> … </search>
…

Figure 6: Plan and Queries Generation Prompt on ClassEval.

Online Retrieval Code Generation Prompt
[System]
You need to help me write code based on the PROBLEM as follows. Previously had a round of
conversation about this problem, you made a PLAN of it and came up with a QUERY that needs
to be searched. I've searched for the background information you might need. You can
selectively refer to it when writing your code.

There are some rules that you must follow for writing the codes:
+ You only need to output codes that can complete the code snippet. You do not need to output
the codes before the [insert] block.
+ Return the codes directly, if you want to add some explanation, please add them to the
comments.
+ The execution result of the code must meet the requirements, including result formatting, etc.
If the result is a table, it is also necessary to note that the header must be the same as the
requirements, and the format of the table values must meet the requirements.
+ Background knowledge is for reference only and not all of the information you need to use in
your code., please focus on code completion.
[Example]
…
[User]
<problem description>

Here's the plan you made earlier and the query to search for:
<plan and queries>

I've searched for the background information you might need. You can selectively refer to it when
writing your code, noting that not all of the information you need to use in your code. The
following information is the markdown text of the main information on the corresponding website.
<retrieve information>

Again, the PROBLEM is as follows:
<problem description>
Please generate codes in [insert] block following the format rules, and should !!!not!!! generate
the code before the [insert] block.

Predict
```python
…
```

Figure 7: Online Retrieval Code Generation Prompt on DS-1000 and ClassEval.

Generation of Test Case Prompt
[System]
I will give you a description of a PROBLEM which needs to be solved by generating code. I need
test case (input for code) for testing if the generated code is correct. Generate up to 3 test cases
for me.

There are some rules that you need to follow:
+ If there is not input for the code, you should not generate test case and should not return any
```python.
+ If the input is fixed or it's not appropriate to have several different inputs, you can just generate 
one test case.
+ If the input has more than one variable, then the test case needs to contain all the variables.
+ Please keep the variable names the same as in the question.
+ If the input variable is a example for a function, you should retain variable names without 
"example".
+ You should return all variables or functions before "BEGIN SOLUTION", and make sure the 
variables or functions can directly be executed. E.g., you should not return the definition of 
load_data() function without using it, you should not load csv from local file, etc. 
[Example]
…
[User]
<problem description> 

Predict
Test case1:
```python
…
```

Test case2:
…

Figure 8: Generation of Test Case Prompt on DS-1000.



Generation of Test Case Prompt
[System]
You are a Python Expert. Provided below is a problem of Python class skeleton with several 
functions inside empty. You will help me to generate test cases for the several empty functions in 
the class.
For each function you need to generate test cases, it will give you a instruction as the function 
comments. The instruction contains inforamtion:
1. The short problem description of the function
2. The input parameters' name, type, and its description of the function in order staring with 
':param'
3. The return type of the function starting with ':return'
4. The example of the function usage starting with '>>>'
5. The result for the example of the function usage shown at the last line of the instruction.

Your response must follow the following rules:
+ Please keep the variable names the same as in the question.
+ For each function you need to write test cases, your response code MUST follow the format of: 
```python \n <code> \n ```
+ You MUST generate test cases for any of the functions taking place in the given class except the
constructor function "__init__" in the class.
+ You MUST generate three test cases for each function with the instruction comment, and MUST
follow the format below, '##' is the separator of each test case:

```python
# <function_name>
##
# Test Case 1
<Test Case 1 code>
##
# Test Case 2
<Test Case 2 code>
##
# Test Case 3
<Test Case 3 code>
```

+ For each test case code above, first follow excatly the format of the example of the function
usage in the instruction comment starting with '>>>', then assign the variable 'result' to the
output of your tested function following the format: result = <code of the tested function result>.
[Example]
…
[User]
<problem description>

Predict
<function_name>

##
Test Case 1

…

Figure 9: Generation of Test Case Prompt on ClassEval.

Refinement with Correctness Testing Code Generation Prompt
[System]
Help me rewrite the code. I will provide the PROBLEM description, the code for this PROBLEM,
and the execution result of this code. Help me rewrite it into the correct code to solve this
PROBLEM.

There are some rules that you must follow for rewriting the code:
+ Is the code execution result the right answer to the PROBLEM? If not, please rewrite the code, if
yes, please do not return any code.
+ If you need to rewrite the code, you need to follow these format rules:

+ You need to first explain why the original code is incorrect in the comment.
+ You should directly answer the code in [insert] block, and should not generate the code

before the [insert] block.
+ You should answer only one code snippet, not more than one.
+ You should directly answer the correct code, and don't offer the other possibilities.
+ You should output the code as the same format as the examples.

+ If you do not need to rewrite the code, return the original code in [insert] block.
[Example]
…
[User]
<problem description>

Here is a code snippet that may contain errors in solving the above PROBLEM:
<initial code>

Above is the code that GPT4 generated for me, here are the inputs as well as the execution
results. You need to determine if the code is correct and suggest changes if it is not.
<serialized output or error>

I've searched for the background information you might need. You can selectively refer to it when
writing your code, noting that not all of the information you need to use in your code. The
following information is the markdown text of the main information on the corresponding website.
<retrieve information>

Again, the PROBLEM is as follows:
<problem description>
Please generate codes in [insert] block following the format rules, and should !!!not!!! generate
the code before the [insert] block.

Predict
```python
…
```

Figure 10: Refinement with Correctness Testing Code Generation Prompt on DS-1000 and ClassEval.

	Introduction
	Related Work
	Methodology
	Retrieval
	Generation Query through Planning
	Online Search

	Refinement
	Correctness Testing
	Generation of Test Cases
	Serialization of Input and Output

	Experiment
	Experiment Setup
	Datasets
	Evaluation
	Base LLMs
	Baselines

	Main Results
	Ablation Study
	Analysis of Different Base Models Performance
	Cascade Analysis
	Analysis of Pipeline
	Error Analysis

	Case Study

	Conclusion
	Online Searching Detail
	Experiment
	Datasets Detail
	Base Models
	Baselines Details
	Ablation Study Details

	Experimantal Results
	Prompts of CoCoST

