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ABSTRACT

It is common for people to create different types of charts to ex-

plore a multi-dimensional dataset (table). However, to recommend

commonly composed charts in real world, one should take the

challenges of efficiency, imbalanced data and table context into

consideration. In this paper, we propose Table2Charts framework1

which learns common patterns from a large corpus of (table, charts)

pairs. Based on deep Q-learning with copying mechanism and

heuristic searching, Table2Charts does table-to-sequence genera-

tion, where each sequence follows a chart template. On a large

spreadsheet corpus with 165k tables and 266k charts, we show that

Table2Charts could learn a shared representation of table fields so

that recommendation tasks on different chart types could mutually

enhance each other. Table2Charts outperforms other chart recom-

mendation systems in both multi-type task (with doubled recall

numbers R@3=0.61 and R@1=0.43) and human evaluations.

CCS CONCEPTS

·Human-centered computing→Visualization; ·Computing

methodologies→Machine learning; Natural language process-

ing; · Information systems→ Information systems applications.

KEYWORDS

Table2seq; chart recommendation; deep Q-learning; copying mech-

anism; search sampling; transfer learning; table representations

∗Author emails: {mezho, jiwe, shihan, yinichen, djiang, dongmeiz}@microsoft.com.
2The contributions by Qingtao Li, Xinyi He, Yuejiang Li and Yibo Liu have been
conducted and completed during their internships at Microsoft Research Asia, Beijing,
China. Their school emails are: newdaylqt@pku.edu.cn, hxyhxy@stu.xjtu.edu.cn,
lyj18@mails.tsinghua.edu.cn, and yl6769@nyu.edu.
1Code will be published at https://github.com/microsoft/Table2Charts to facilitate
future research, once it is approved by an internal review.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’21, August 14ś18, 2021, Virtual Event, Singapore

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467279

ACM Reference Format:

Mengyu Zhou, Qingtao Li, Xinyi He, Yuejiang Li, Yibo Liu, Wei Ji, Shi Han,

Yining Chen, Daxin Jiang, and Dongmei Zhang. 2021. Table2Charts: Recom-

mending Charts by Learning Shared Table Representations. In Proceedings of

the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD ’21), August 14ś18, 2021, Virtual Event, Singapore. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3447548.3467279

1 INTRODUCTION

Creating charts for a multi-dimensional dataset (denoted as table)

is a common activity in many domains such as education, research,

engineering, finance, etc. To discover insights and perform routine

analysis, people spend a huge amount of time constructing different

types of charts to present diverse perspectives on their tables ś such

as the charts in Figure 2 created for Table 1a and 1b. Both data

queries (selecting what data to analyze) and design choices (how

to visualize selected data) are made during chart creation [8]. This

tedious process requires experience and expertise in data analytics

and visualization tools. For example, to compose the bar chart in

Figure 2a, one has to first select the left-most three fields/columns

from Table 1a, then choose bar chart type, map the three fields onto

x and y axis, stack two value series one upon another, etc.

Figure 1: An Example of Chart Creation Entry UI.

To simplify chart composing, a long line of works tried to build

machine learning models recommending data queries and/or design

choices, such as DeepEye [9], Data2Vis [4], DracoLearn [13] and

VizML [8]. However, most of them did not address the single-type

tasks that each recommends one specific type of charts for a given

table, including less used but meaningful minor chart types (e.g.,

area and radar charts). They only considered themulti-type task

where a ranked list of fewmajor types of charts (e.g., line, bar, scatter

https://github.com/microsoft/Table2Charts
https://doi.org/10.1145/3447548.3467279
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Table 1: Two Example Tables.

(a) Student Statistics Table.

Program Total Male 
Students

Total Female 
Students

Gender 
Ratio

Total Male 
Students 

Percentage

Total Female 
Students 

Percentage

Total 
Students

Total Program 
Students 

Percentage

General 
Education 4,978,145 3,225,579 0.65 60.68% 39.32% 8,203,724 91.03%

Cross 
border 120,332 64,357 0.53 65.15% 34.85% 184,689 2.05%

CBE 121,034 86,950 0.72 58.19% 41.81% 207,984 2.31%
Islamic 

Education 207,469 53,048 0.26 79.64% 20.36% 260,517 2.89%

TTC 41,166 35,584 0.86 53.64% 46.36% 76,750 0.85%
TVET 52,857 8,147 0.15 86.65% 13.35% 61,004 0.68%

Literacy 
school 8,742 8,247 0.94 51.46% 48.54% 16,989 0.19%

(b) Evapotranspiration and Wind Table.

Date Evapotranspiration
(mm.) Dir. Wind speed

(m/s)

1-May-2010 5.4 N 0.81

19-May-2010 6.6 NE 1.11

6-Jul-2010 3.0 E 0.39

3-Aug-2010 3.5 SE 0.39

1-Sep-2010 5.0 S 1.31

12-Sep-2010 3.7 SW 0.31

23-Sep-2010 2.2 W 0.50

14-Oct-2010 5.2 NW 0.31
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(a) Bar Chart for Table 1a.
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(b) Area Chart for Table 1a.
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(c) Scatter Chart for Table 1b.
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(d) Pie Chart for Table 1a.
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(e) Line Chart for Table 1b.
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(f) Radar Chart for Table 1b.

Figure 2: Example Charts for Table 1a and Table 1b.

and pie charts) are recommended together. But both single and

multi-type tasks should be tackled for real-world scenarios: When

facing a table for the first time, one usually has no clear idea about

what chart should be created. In this scenario, an assistant could

help leverage past common wisdom of what commonly composed

charts could be created for the table ś which is the multi-type task.

For example, in Excel, the łRecommended Chartsž button in Figure 1

is expected for this. Later with a clearer intention in mind, the main

obstacle is the efforts needed to realize ideas through the complex

charting process. Since lots of charting tools put chart type buttons

/ choices as the top entry points to chart composing (e.g., the chart

type icons in Figure 1), guessing and suggesting auto-filling and

completion of the details of a chosen chart type ś which is the

single-type task ś could help save time and efforts from users. For

example, when the first three fields of Table 1a are selected, after

clicking the bar chart icon on Figure 1, a lot of efforts could be

saved if the rest of design choices on field mapping and stacking

could be done automatically, leading to the bar chart in Figure 2a.

When tackling the single-type and multi-type tasks with both

data queries and design choices, there are three fundamental chal-

lenges. First, separate costs: It is memory and speed inefficient to

design, train and deploy models for multi-type task and single-type

tasks repeatedly and independently. Second, imbalanced data:

The available data for different chart types are highly imbalanced.

Four major types of charts (line, bar, scatter and pie) cover 98.91%

of the available charts while others rarely appear because it is hard

for non-experts to create them. Lack of data in minor chart types

(area and radar) makes it hard to build high-quality models for

them. Third, table as context: Selecting and visualizing data from

a table depend on not only the data statistics, but also the semantic

meanings of the whole table context. Proper models need to be

designed to take table context into chart recommendation.



In this paper, we propose Table2Charts framework to learn

common patterns of chart creation ś including both data queries

and design choices ś from a large amount of (table, charts) exam-

ples and to recommend charts for each given table. In ğ2, charts

recommendation is formulated as table to sequence(s) problem with

next-action-token estimation to fill chart template(s). This formula-

tion allows chart recommendation with partial intent when part of

data queries and design choices are already given. Then in ğ3, as

the estimation heuristic for beam searching, we design an encoder-

decoder deep Q-value network (DQN) which selects table fields to

fill template(s) via copying mechanism. All recommendation tasks

share one encoder but have their own decoders, which addresses

the separate costs challenge. The DQN is trained using mixed learn-

ing on the multi-type task of major chart types. By exposing its

encoder part to the diverse source tables of different chart types,

it learns shared table representations containing semantic and

statistic information of table fields. Then the pre-trained table repre-

sentations are transferred for type-specific decoders of single-type

tasks, relieving the imbalanced data problem.

From the public web, we collect a large corpus of 266252 charts

created from 165214 tables in Excel files and use a public Plotly

corpus of 67617 charts from 36888 tables to verify the effectiveness

of Table2Charts framework in ğ4. For each chart type, the recall

for top-3 and top-1 recommendations are 59.99% ∼ 94.04% and

49.30% ∼ 79.72% on the single-type tasks. The multi-type task of

recommending major chart types has 61.84% recall at top-3 and

43.84% recall at top-1, which exceed the baseline methods whose

maximal recall numbers are 27.14% and 13.17% respectively. Hu-

man evaluation is also conducted to validate the precision of the

proposed framework on 500 frequently visited web tables from a

search engine. Lastly, through T-SNE visualization, we find that the

DQN could learn shared table representations during multi-type

task training for later transfer learning, thus improving the per-

formance and saving memory occupation of single-type tasks. All

these experiments and evaluations justify that Table2Charts could

efficiently learn to help composing charts.

In summary, our main contributions are:

• Table2Charts framework is proposed by us to learn human

chart composing wisdom. It generates both data queries and

design choices in an action sequence for multi-type and

single-type chart recommendation tasks with the state of

the art performance and efficiency.

• To the best of our knowledge, we conduct the largest scale

(165k tables and 266k charts from Excel corpus) training with

diverse evaluations (on Excel, Plotly, and web table corpora)

of chart recommend systems.

• We show the feasibility of learning shared table represen-

tations (encoding table fields into embedding vectors) for

enhancing down-stream data analysis tasks.

2 PROBLEM

To build machine learning models that learn patterns from large

amounts of (table, charts) pairs, and to generate commonly com-

posed charts for a given table, in this section we formulate single-

type and multi-type chart recommendation tasks as table to action

sequences generation by filling chart grammar templates.

A table here is an 𝑛-dimensional dataset D which contains 𝑛

data fields FD = (𝑓 D1 , · · · , 𝑓 D𝑛 ). Each data field refers to an at-

tribute of the dataset with its corresponding header name (attribute

metadata) and data values (records). For example, each column from

tables in Figure 1 is a data field with its first row as header.

To demonstrate our ideas, as shown in Figure 2, in this paper

we pick four major and two minor chart types that appeared in

common charting tools such as Excel. The major types are line, bar,

scatter and pie charts. The minor types are area2 and radar3 charts.

2.1 Chart Templates

Although different types of charts exhibit distinct visual effects and

behaviors, the essential actions for creating them from tables can be

summarized into two categories: Selecting / referencing table fields

and running specific charting commands / operations to organize

and plot the selected fields. In this sense, a chart can be regarded

as a sequence of actions on data queries and design choices.

Definition 1 (Action Space / Tokens). For an 𝑛-dimensional ta-

ble D, there are two categories of action tokens AD = FD ∪ C

representing core actions of composing a chart:

• Field referencing token 𝑓 ∈ FD that indicates a field is se-

lected for composing chart.

• Command tokens (denoted as C) which defines other com-

mands for structuring a chart, including:

(1) Chart type tokens, such as [Line] means to start compos-

ing a line chart sequence;

(2) Separator [SEP] which splits the referenced fields with

different roles in a chart sequence;

(3) Group operations in G = {[Cluster], [Stack]}4 indicat-

ing how to put multiple data values from multiple fields

(series) together along the x axis.

Then we can define how to represent different types of charts us-

ing these unified action tokens. Unlike flexible language modelling

in NLP, here action tokens should be organized into a sequence

according to specific grammar rules of a chart type.

Definition 2 (Chart Grammar Templates). The grammar templates

of each chart type can be defined in the Backus-Naur form:

⟨Line⟩ |= [Line]⟨f+⟩[SEP]⟨f*⟩[SEP]

⟨Bar⟩ |= [Bar]⟨f+⟩[SEP]⟨f*⟩⟨grp⟩

⟨Scatter⟩ |= [Scatter]⟨f⟩[SEP]⟨f⟩[SEP]

⟨Pie⟩ |= [Pie]⟨f⟩[SEP]⟨f*⟩[SEP]

⟨Area⟩ |= [Area]⟨f+⟩[SEP]⟨f*⟩[SEP]

⟨Radar⟩ |= [Radar]⟨f+⟩[SEP]⟨f*⟩[SEP]

where ⟨grp⟩, ⟨f*⟩, ⟨f+⟩ and ⟨f⟩ are token placeholders: ⟨grp⟩ |= an

operation ∈ G, ⟨f*⟩ |= 𝜆 | ⟨f⟩⟨f*⟩, ⟨f+⟩ |= ⟨f⟩ | ⟨f⟩⟨f+⟩, and

⟨f⟩ |= a field ∈ FD , 𝜆 means empty. The first ⟨f+⟩ or ⟨f⟩ segment is

2Area Chart is very similar to line chart. The difference is that in area chart, the area
between axis and line are commonly emphasized with colors or textures, so that the
scale of color fill indicates the volumes. Commonly, area charts are used to represent
accumulated totals using numbers or percentages over time.
3Radar chart is used to compare the properties of a single component or the properties
of two or more variables together.
4[Cluster] means the values from several fields are put side-by-side, while [Stack]
means accumulating them one-upon-another for each x category / label (E.g., Figure 2a).



the y-field(s) and the second ⟨f*⟩ or ⟨f⟩ segment is the x-field(s). 5

Note that how x and y axes behave also depends on chart type: E.g.,

scatter and pie charts only allow one y-field; temporal records will

be ordered by their timestamps along x-axis on a line chart; etc.

Hard constraints are also included in the template definitions

to restrict heuristic beam searching (see ğ3). These could be any

hand-written rules, such as the data type of a field mapping to

y-axis is forbidden to be string type. Currently we only set field

type and field number limitations and let Table2Charts models to

learn the rest. More rules such as the ones in Draco [13] could be

adopted as hard constraints to further improve the framework.

With the above definitions, now each chart can be written down

as an action sequence. For example, the sequence of the bar chart

in Figure 2a (created from Table 1a) is [Bar] (Total Male Students)

(Total Female Students) [SEP] (Program) [Stack].

There are more detailed charting aesthetics [20] to consider, such

as shape, size, color, line width and type, etc. In this paper, rather

than considering every detail, we mainly focus on the core parts of

data queries and design choices ś how to select and compose fields

as axes of proper chart type ś to study if Table2Charts framework

can learn common wisdom in a data-driven way. Meanwhile, for

the sake of simplicity, we only deal with database-like tables and

referencing a whole field without filtering, aggregation, bucketing

or ordering. All the above subtle aspects of analysis may not be well

supported by our training data (Excel files on the public web, see

ğ4.1) in both quantity (< 5% charts involve customizing them) and

quality (the creators of these files may not be experts on inessential

parts of charting). They can still easily be added as new tokens into

the action space and grammar templates in the future.

2.2 Table to Sequence Generation

Table to charts recommendation now becomes how to meaningfully

fill the placeholders of chart template(s). In other words, how to

learn common wisdom to generate action token sequences (token-

by-token from left to right) that follow the grammars of the given

template(s). Note that in a single-type task the first chart type token

is fixed (the generation starts from the second token), while in the

multi-type task it starts from the first chart type token.

A common way to solve sequence generation problem is to learn

an estimation function for heuristic beam searching (more details in

appendix ğA.3). Given a table D and an incomplete chart sequence

𝑠 , we can define the valid actions space of the sequence as AD (𝑠)

according to its corresponding template. Follow the language mod-

elling formulation in [24], we choose 𝑄 (𝑠, 𝑎) = 𝑃 (𝑠𝑎 ∈ T +
D

| 𝑠,D)

as action-value function to guide the choice of next action token 𝑎 ∈

AD (𝑠). Here T +
D

is the set of all target chart sequences (the charts

that would be adopted by user for D) and their prefixes. So the op-

timal action-value function 𝑞∗ (𝑠, 𝑎) =

{

1 if 𝑠 ′ = 𝑠𝑎 and 𝑠 ′ ∈ T +
D
,

0 otherwise.

is the learning target for 𝑄 (𝑠, 𝑎). More details of the corresponding

Markov decision process can be found in appendix ğA.1.

5X-fields are the fields mapped to x-axis in line, bar, scatter and area charts, to
legend in pie charts, and to curved polar axis in radar charts. Multiple x-fields means
concatenation. Y-fields are the fields mapped to y-axis in line, bar, scatter and area
charts, to the size of slice in pie charts, and to radial axis in radar charts. Multiple
y-fields means multiple value series are shown together.
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Figure 3: Overview of Table2Charts Framework.

3 METHOD

An overview of Table2Charts framework is shown in Figure 3.

To approximate 𝑞∗ (𝑠, 𝑎) for chart generation, in ğ3.1 we design an

encoder-decoder deep Q-Network (DQN) architecture with copying

mechanism. Because the exposure bias is severe for sequence gen-

eration with templates, in ğ3.2 we adopt search sampling technique

to train DQN during beam searching. Finally, in order to solve the

imbalanced data problem and mutually enhance the performance

among different chart types, in ğ3.3 we propose a mix-and-transfer

training paradigm for all the single and multi-type tasks.

3.1 Filling Templates: DQN with Copying

As shown in Figure 4, we design a DQN (deep Q-network)𝑄 (𝑠,AD )

to approximate𝑞∗ (𝑠, 𝑎).𝑄 (𝑠,AD ) takes all the fieldsFD = (𝑓1, ..., 𝑓𝑛)

and a state 𝑠 = 𝑠0 ...𝑠𝑇−1 as its input, and calculates the estimated

action values (∈ [0, 1]) for all 𝑎 ∈ AD . Only the outputs forAD (𝑠),

i.e. the valid actions w.r.t. the template grammar of 𝑠 , are considered.

In Figure 4a is our customized CopyNet architecture. As shown

in Figure 4a, the output vector of 𝑄 (𝑠,AD ) consists of two parts:

łGeneratež (for the command tokens) and łCopyž (for the field to-

kens). The łGeneratež part contains the action value estimations for

command tokens C, which comes from a full connected layer with

a binary softmax applied on the final decoder state 𝑧𝑇 . The łCopyž

part has variable length of value estimations for FD , which comes

from a binary softmax applied on the product of 𝑧𝑇 and a non-linear

transformation of the memory 𝑀 = {ℎ1, ..., ℎ𝑛} (the encoder out-

puts). We adopt GRU [2] in bidirectional and unidirectional ways for

the encoder and decoder RNN parts, respectively. Thus𝑀 is simply

the outputs of a bidirectional GRU for FD = (𝑓1, ..., 𝑓𝑛). A decoder

state 𝑧𝑡 is updated by 𝑝𝑡 from the previous state 𝑧𝑡−1 in GRU cell.

𝑝𝑡 is a linear projection from the concatenated vector of three parts:

selective read vector 𝜁𝑡 , context vector 𝑐𝑡 and the token embedding

𝑒 (𝑠𝑡−1). Selective read vector6 choose the field representation from

𝑀 for a field token: 𝜁𝑡 =

{

ℎ𝜏 𝑓𝜏 = 𝑠𝑡−1,

®0 otherwise.
Context vector 𝑐𝑡 is a

linear attention between 𝑧𝑡−1 and 𝑀 : 𝑐𝑡 =

∑𝑛
𝜏=1

𝑒𝜂 (𝑧𝑡−1,ℎ𝜏 )
∑

𝜏′ 𝑒
𝜂 (𝑧𝑡−1,ℎ𝜏′ )

ℎ𝜏

where 𝜂 (·, ·) is a linear function on two vectors.

6Since each field token in 𝑠 can only refer to one unique field from FD rather than
possibly multiple source tokens in the original CopyNet, the calculation of selective
read vector 𝜁 is simplified in𝑄 (𝑠, AD ) .
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The token embedding part omitted in Figure 4a is shown in Fig-

ure 4b. It is part of encoder and is shared with decoder. Three kinds

of token features (details in ğA.2) are fused together: 1) Semantic

embedding of header name using FastText [1]; 2) Categories in-

cluding token type, field data type, etc.; 3) Data features about the

statistics and distribution information of data values.

There are several differences between our model and the original

CopyNet architecture [7]: First, unlike the typical NLP scenario

where vocabulary size is far greater than the length of the copying

source, vocabulary (the command tokens) in Table2Charts is small

while the universe of table fields is infinite, and there is no overlap-

ping between generate mode (for vocabulary) and copy mode (for

table fields). Second, the input tokens to 𝑄 (𝑠,AD ) first go through

the feature transformation network 𝑒 (·) in Figure 4b rather than

the usual index to embedding matrix in NLP. Third, the output of

𝑄 (𝑠,AD ) is a vector of [0, 1] values for each action, rather than a

probability distribution over all actions in the original CopyNet.

Our design of DQN with copying mechanism is naturally suited

for tasks generating structures from table fields. It handles the open

vocabulary of table field universe and provides a clear division be-

tween table representation (encoder) and template filling (decoder).

The encoder part takes in the whole table context and generate

field embedding vectors as table representations. The decoder part

consumes these vectors for next-token estimation. As good 𝑞∗ (𝑠, 𝑎)

estimator, 𝑄 (𝑠,AD ) is then used by Table2Charts as a heuristic

function in beam searching to generate multiple sequences.

3.2 Fixing Exposure Bias: Search Sampling

A traditional way to train a next-token estimator is through teacher

forcing [21] by only sampling the prefix sequences of user-created

charts, and comparing the estimated actions with actual user ac-

tions. In other words, in teacher forcing the only samples used to

train𝑄 (𝑠,AD ) network come from a corpus of (table, charts) pairs

following the format of 𝑞∗ (𝑠, 𝑎) (see ğ2.2) with 𝑠 ∈ T +
D
.

As discussed in [14, 24], with only teacher forcing, the outcome

model could face exposure bias problem which is common in se-

quence generation. During teacher forcing, the model is only ex-

posed to the ground truth states (target prefixes); While at inference

time it has only access to its own predictions. As a result, during

generation it can potentially deviate quite far from the actual se-

quence to be generated, leading to a biased estimation.

To mitigate exposure bias, we take the search sampling approach

in [24] to close the gap between training and inference. Inspired

by reinforcement learning, the search sampling process adopts

𝑄 (𝑠,AD ) as the heuristic function to conduct beam searching on

each table (details in appendix ğA.3). Then the expanded states

(including negative samples, 𝑠 not in T +
D
) will be stored in a replay

memory for periodical update of 𝑄 (𝑠,AD ) itself. This process is

very effective after thewarm-up of the networkwith teacher forcing.

Without search sampling, the model would perform poorly with

the customized beam searching process limited by chart templates.

3.3 Mixed Training and Transfer Learning

As discussed in ğ1, for single and multi-type tasks, there exists sep-

arate costs and imbalanced data challenges. As shown in Figure 3,

our basic idea to solve the challenges is that the table representa-

tions (the encoder part) can be shared by several (one multi-type

and six single-type) tasks. This exposes the encoder to diverse and

abundant table field samples, and reduce the memory occupation

and inference time for deploying models of the tasks.

To train the shared table representation encoder and the task-

specific decoders, as shown in Figure 3, we propose a mix-and-

transfer paradigm containing two stages: 1)Mixed Training: Mix-

ing samples from all major chart types together and train one DQN



model. Its mixed encoder will be transferred to the next stage, while

the whole mixed DQN will be used for the multi-type recommenda-

tion task. 2) Transfer Learning: Take the mixed encoder from the

previous stage and freeze its parameters. Then, for each single-type

task, a new decoder is trained with the fixed shared encoder using

only the data of this chart type.

Comparing to Separate Trainingwhere awhole DQN is trained

for each single-type task (using only the data of that chart type),

the mix-and-transfer paradigm in Table2Charts has the following

advantages: First, smaller memory occupation and faster inference

speed, because now DQN models for all tasks share one same en-

coder, while separate training still inefficiently holds one for each

task. This addresses the separate cost challenge. Second, the en-

coder is exposed to far more samples than each individual chart

type can provide. This not only leads to better learning and general-

ization of the table representation (see ğ4.5 on how table context

is represented), but also addresses the imbalanced data challenge

so that only decoder part (which is small comparing to the larger

encoder part) needs tuning for minor chart types.

4 EXPERIMENTS

In ğ4.1, we first introduce the (table, charts) corpora which are

used for training and evaluating Table2Charts and other baseline

models. Then in ğ4.2 and ğ4.3, the performance of mix-and-transfer

paradigm (discussed in ğ3.3) is evaluated for single and multi-type

tasks. Further empirical studies are also discussed in ğ4.4 and ğ4.5.

The experiments are run on Linux machines with 24 CPUs, 448

GB memory and 4 NVIDIA Tesla V100 16G-memory GPUs. Each

training consists of 30 epochs of teacher forcing on 1 node followed

by 5 epochs of search sampling (see ğ3.2) on 8 nodes. For fair

comparisons, all evaluations are done on 1 node with the same

configuration. By default, all evaluation metrics reported in this

section are averaged over 5 runs for experiments with randomness.

4.1 Chart Corpora

Two corpora ś Excel and Plotly ś are used for training and evalua-

tion. The Excel corpus is created by us to train and evaluate models,

but some baseline models do not provide training scripts. To make

fair comparisons, in ğ4.2 we also evaluate every model on a public

Plotly corpus [8] without training or fine-tuning on it.

4.1.1 Excel Corpus. Our chart corpus contains 113390 (42.59%)

line, 67600 (25.39%) bar, 64934 (24.39%) scatter, 17436 (6.55%) pie,

1990 (0.75%) area and 902 (0.34%) radar charts. They are extracted

using OpenXML [11] from Excel spreadsheet files crawled from the

public web. Following data preparation steps are also taken:

1) Cell Reference Cleansing. X-fields, y-fields and series names7

are stored as location references to spreadsheet cells (even in an-

other file), which may lead to inaccessible or invalid tables. Charts

with these kinds of cell references are removed from the corpus.

2) Source Table Restoration. In spreadsheets, a chart object has

no reference to its source table. (Only direct cell references are

saved.) To restore the region and structure of its source table, we

implement a table detection algorithm [5] according to its cell

references. A chart will be dropped if its references are not covered

7Series names refer to the name and meaning of each y-field, which are usually
displayed in chart legend.

by any detected table, the series names are not in the table header

region, or the y-field references are not in the table value region.

3) Combo Chart Splitting. In the corpus all combo charts are split

into simple charts. Several simple charts (even in different types)

can be drawn into one combined plot ś e.g., draw a line chart over

a bar chart. (Note that simple charts can still have multiple x-fields

and y-fields.) In this paper, we focus on simple charts and leave

recommendation of combo charts as future work.

4) Table Deduplication. To avoid the łdata leakagež problem that

duplicated tables are allocated into both training and testing sets,

tables are grouped according to their schemas8. Then within each

group, same (table, chart) pairs are merged.

5) Down Sampling. After deduplication, the number of tables

within each schema is very imbalanced ś 0.23% schemas cover 20%

of these tables. To mitigate this problem, we randomly sample at

most 10 unique tables for each unique (schema, chart) pair.

After preparing the data, 266252 charts are remained in 165214

unique tables with 98588 different schemas. The schemas (with their

tables and charts) are randomly allocated for training, validation

and testing in the ratio of 7:1:2.

4.1.2 Plotly Corpus. We also adopt the public Plotly community

feed corpus [8] and sample 36888 tables with 67617 charts (22644

line charts, 20053 scatter charts, 24204 bar charts and 716 pie charts)

from it for testing in ğ4.2. To extract (table, charts) pairs, following

the data processing procedure in VizML [8], we download the full

corpus (205GB) and adopt data cleansing code from VizML to re-

move charts with missing data. Also, similar procedures of combo

chart splitting, table deduplication and down sampling are applied

to the remaining (table, charts) pairs as in the Excel corpus.

4.2 Evaluations on Multi-Type Reco Task

As mentioned in ğ3.3, for multi-type task, a mixed DQN is first

trained using samples of Excel major chart types. Then, this mixed-

trained DQN is used as heuristic function for beam searching to gen-

erate a ranked list of major-type charts for each table. We compare

Table2Charts framework on recall and precision with four baselines:

DeepEye [9], Data2Vis [4], DracoLearn [13] and VizML [8].

4.2.1 Baselines. DeepEye (https://github.com/Thanksyy/DeepEye-

APIs) provides two public models (ML and rule-based) without

training scripts. Thus, we adopt its models without training on

our Excel corpus. Because its ML approach works better than its

rule-based one on Excel test set, only its ML results are reported

in this paper. Data2Vis (https://github.com/victordibia/data2vis)

model was originally trained on 11 tables with 4.3k charts. For fair

comparison, we re-train its model using our larger Excel training

set (see ğ4.1.1) which is also used by Table2Charts. DracoLearn

(https://github.com/uwdata/draco) provides inference API without

training scripts. Again, we evaluate it without training on our Excel

chart corpus. It differs from the other methods in that it needs

human defined rules as constraints and focuses on searching for

specified chart components that least violates them. Thus, in Draco

we adopt its default rules and specify it to generate chart type,

x-fields and y-fields. VizML (https://github.com/mitmedialab/vizml)

8Two tables are defined to have the same schema if they have the same number of
fields, and each field’s data type and header name are correspondingly equal.

https://github.com/Thanksyy/DeepEye-APIs
https://github.com/Thanksyy/DeepEye-APIs
https://github.com/victordibia/data2vis
https://github.com/uwdata/draco
https://github.com/mitmedialab/vizml


Table 2: Evaluations of Table2Charts and Baseline Methods

on Multi-Type Reco Task. (Averaged over 5 runs.)

Dataset Stage Recall DeepEye Data2Vis VizML Table2Charts

Excel

Data Queries
R@1 34.33% 31.16% - 64.96%

R@3 47.13% 42.18% - 77.88%

Design Choices
R@1 17.83% 26.26% 21.38% 57.69%

R@3 20.35% 48.88% - 77.59%

Overall
R@1 10.18% 13.17% - 43.84%

R@3 15.85% 27.14% - 61.84%

Plotly

Data Queries
R@1 49.99% 63.78% - 83.34%

R@3 62.80% 71.82% - 92.02%

Design Choices
R@1 37.69% 13.15% 30.21% 40.17%

R@3 37.70% 32.85% - 55.57%

Overall
R@1 25.05% 16.42% - 33.37%

R@3 35.98% 33.96% - 48.03%

formulates the design choices into five classification problems and

does not recommend data queries. In other words, VizML lacks

ability to recommend charts without field selections. Thus, after

re-training the classification models on the Excel training set, we

only test VizML performance on design choices. More details of

experiment setup can be found in appendix ğB.

4.2.2 Large-scale Evaluations on Recall. Recall of user charting ac-

tions in three stages ś data queries, design choices and overall chart

recommendation ś are evaluated on Excel (testing set) and Plotly

(whole dataset) corpora for Table2Charts and the four baselines. On

data queries, we examine whether the recommended fields match

user-selected ones. On design choices, we evaluate whether models

can recommend correct chart type, field mapping and bar grouping

operation given the user-selected fields. On overall chart recom-

mendation, both data queries and design choices are compared with

the ground truth. Recall at top-𝑘 (𝑘 = 1, 3; R@1, R@3) numbers

are adopted as evaluation metrics. They show how a ranked list

of chart recommendations matches the user-created charts. More

details of recall calculation can be found in appendix ğB.2.

The recall numbers are shown in Table 2. We can see that Ta-

ble2Charts outperforms the baseline methods for all three stages

on both Excel and Plotly corpora. The overall R@1 and R@3 have

reached 43.84% and 61.84% on Excel (33.37% and 48.03% on Plotly),

which exceeds those of baselines by large margins (at least doubled

on Excel). The recall numbers of data queries stage are higher on

Plotly than Excel ś This is because in Plotly corpus, each table

only contain fields which are used in corresponding chart, and thus

lower the difficulty of selecting fields. In addition to the results in

Table 2, DracoLearn has R@1 < 1% on all stages ś It needs human-

defined rules as constraints and focuses on searching for charts

that least violates them, which leads to weak generalization.

4.2.3 Human Evaluation on Precision. To evaluate the quality of

recommended charts (precision9), we build a labelling website to

collect and compare ratings for the top-1 recommendations from

Table2Charts, DeepEye and Data2Vis10. 500 unique HTML tables

crawled from the public web are selected based on query-frequency

9Precision numbers cannot be calculated from Excel and Plotly corpora because they
only have user-created charts but there can be good charts not created by users.
10VizML and DracoLearn are not included because VizML cannot recommend complete
chart with data queries and DracoLearn has weak generative power.

Table 3: Summary of Human Evaluation Ratings

Rating 5 4 3 2 1 Avg ≥4 ≥3 ≤2

Table2Charts 517 158 115 102 98 3.90 675 790 200

Data2Vis 309 178 167 125 211 3.25 487 654 336

DeepEye 312 166 139 137 236 3.18 478 617 373

in a search engine. 10 experts working on web-table visualization

manually label in the following way: For a given table, the website

shows the table content for reading. When an expert confirms un-

derstanding the table, 3 charts recommended by the 3 models will

be rendered with the same visualization library and shown in ran-

dom order anonymously. Three 1 to 5 integer ratings (higher score

indicates better chart) are then labelled by the expert. Additionally,

the expert is asked to mark if the table is actually unsuitable for

chart recommendation. For every (table, 3 recommendation) pair,

we collected results from 3 experts to avoid labelling bias.

We filtered out the tables which marked as łunsuitable for chart

recommendationž11, and got the distribution of the ratings based

on 330 tables left. As shown in Table 3, Table2Charts has the highest

average score, the largest amount of good charts (rating=5, rating≥4,

rating≥3), and the smallest amount of bad charts (rating ≤2).

To check statistical significance, we further conduct Wilcoxon

signed-rank test [19] which is a non-parametric statistical hypoth-

esis test used to compare two related or matched samples to assess

whether their population mean ranks differ (i.e. it is a paired differ-

ence test). At 95% confidence level, when comparing Table2Charts

with DeepEye and comparing Table2Charts with Data2Vis, both

𝑝-values from Wilcoxon test are less than 0.0001. These results

show that the recommended charts from Table2Charts have better

quality than those from DeepEye and Data2Vis.

4.2.4 Efficiency Comparison. On average, Table2Charts only takes

12.14ms to generate chart recommendations for a table, while it

costs DeepEye and Data2Vis 48.19ms and 210ms, respectively. In

summary, Table2Charts outperforms baseline methods on both

performance and efficiency.

4.3 Evaluations on Single-Type Reco Tasks

After mixed training, as discussed in ğ3.3, the shared table represen-

tation encoder is taken and frozen for the training of six decoders

for six single-type tasks. For comparison, the separate training (see

ğ3.3) will generate an independent DQN model for each chart type

with the same settings as the transfer learning. Also, the mixed

DQN from ğ4.2 is directly tested on single-type tasks of major types.

The evaluation results are shown in Table 4. Themix-and-transfer

paradigm (łTransferž) has higher recall numbers than separate

training (łSeparatež) and mixed-only (łMixedž) DQN for all chart

types. Table2Charts could handle single-type tasks well by learn-

ing shared table context representations. Considering the model

size where the encoder and decoder parts are designed with 1.3M

and 0.5M parameters (see appendix ğB.1.1), łSeparatež have 10.8M

parameters while łTransferž only has 4.3M parameters. In this way,

Table2Charts reduces separate costs and improves efficiency for

model deployment and inference.

11Determining whether a table is suitable for generating a chart is out of the scope of
this paper and would be part of future work.



Table 4: Evaluations of Three TrainingMethods (ğ3.3) on Six

Single-Type Tasks. (Averaged over 5 runs.)

Type(s) Recall Separate Mixed Transfer

Major Type

Line
R@1 52.02% 52.53% 53.78%

R@3 68.28% 68.58% 69.37%

Bar
R@1 56.56% 58.69% 60.25%

R@3 70.34% 72.07% 73.14%

Scatter
R@1 51.73% 54.69% 56.48%

R@3 69.33% 68.96% 74.24%

Pie
R@1 73.60% 77.99% 79.72%

R@3 90.60% 93.12% 94.04%

Minor Type

Area
R@1 27.48% ś 49.30%

R@3 40.32% ś 59.99%

Radar
R@1 49.90% ś 71.77%

R@3 60.93% ś 77.00%

As for minor chart types, there are huge gaps between the per-

formance of łTransferž and łSeparatež in Table 4. With mix-and-

transfer (łTransferž) paradigm, on average R@1 and R@3 increase

21.84% and 17.87%. The main reasons are that the shared encoder

could capture and extract the information of table context and field

semantics, and the quantity of minor type charts are sufficient to

train decoder which is of smaller size. Thus, as discussed in ğ3.3,

the imbalanced data problem is overcome.

4.4 Recommendation Case Studies

As an example, in this section we take Table 1a (with user-created

Figure 2a and 2b) to conduct empirical studies. When a user does

not know where to start, the multi-type mixed model (ğ4.2) recom-

mends common types of charts. Its top-3 recommendations are:

1) [Bar](TotalMale Students)(Total Female Students)[SEP](Program)[Stack]

2) [Bar](TotalMale Students)(Total Female Students)[SEP](Program)[Cluster]

3) [Bar](Total Program Students Percentage)[SEP](Program)[Cluster]

From the above results, we can see that the mixed model suc-

cessfully recommends the bar chart in Figure 2a as the top-1 result.

Our model can identify 𝑓 1a2 -𝑓 1a3 as a group and use them to create a

bar chart with two y-fields. Result 2) is the clustered form of the bar

chart in result 1). Result 3) is also useful. Our model can identify

𝑓 1a8 should not be a measure in the 𝑓 1a2 -𝑓 1a3 group. The multi-type

model tend to recommend what are commonly composed, thus may

lack diversity (e.g., all the above results are bar charts). So one can

also put single-type recommendations into the list. (We leave as a

future work how to mix the results from multi-type and single-type

models together for a balanced recommendation.)

When a user has chosen a specific chart type and needs auto-

completion help, it is time to use single-type models (ğ4.3) for

recommendations. In such scenario, our single-type models can

recommend all as top-1 the area chart in Figure 2b and the bar

chart in Figure 2a. Furthermore, the single-typed model can also

recommend the pie chart in Figure 2d, which is also meaningful to

show the percentages but not originally created by the user.

4.5 Exploring Table Representations

To understand how the embeddings generated by the shared table

representation encoder work, from the validation set 20000 fields

(from 3039 tables) are randomly chosen and visualized through

Total Female

Students Percentage

Total Male

Students Percentage

Total Program

Students Percentage

Numerical

String

Date-time

Year

Unknown

Neighbor

Fields

Final energy 

consumption 

(%)

17.4%

26.8%

8.4%

1.7%

28.3%

10.0%

5.8%

1.6%

Share

46%

46%

6%

2%

…

Figure 5: Visualization of Shared Table Representations.

t-SNE [16]. In the left part of Figure 5, each point represents a field

and the color represents its field type. In the figure, we can see the

field type information is learnt by the embedding in a meaningful

way. For example, date-time fields and year fields are close. One

possible explanation is that they both are often used as x-axes in

line charts, and thus have similar representations.

As depicted in Figure 5, marked by arrows are the points corre-

sponding to the fields 𝑓 1a5 , 𝑓 1a6 and 𝑓 1a8 (which is łTotal Program

Students Percentagež) from Table 1a. They are close to each other

because their record values are all percentages. Note that 𝑓 1a5 and

𝑓 1a6 are closer compared to 𝑓 1a8 because their semantics are similar

(contain gender information). Some example neighbor fields (based

on cosine distance) of 𝑓 1a8 are shown in the right part of Figure 5.

Similar to 𝑓 1a8 , these fields are also percentages that sum up to 1.

Two more clusters are shown as examples in Figure 5. In the

squared area, there are many fields about countries. E.g., there are

four numerical fields (from four tables) with header names łU.S.ž,

łJapanž, łEnglandž and łScotlandž showing annual statistics. In the

circular area, many fields take the role of index or ID. E.g., located

in this cluster are four fields (from four tables) with header names

łVerminIDž, łIndexž, łcategoryž and łCourse Codež and increasing

integers. These integers lose the measure property ś they are not for

mathematical operations / aggregations. Thus, these fields locate

very close to string fields (dark blue points) in Figure 5.

5 RELATED WORK

Analysis Recommendation: For general data analysis and in-

sight recommendation from tables, current systems are mostly

based on collaborative filtering [10], statistical significance [17],

heuristic and history matching [6, 12], or only target for specific

analysis [24]. They rarely consider the semantic meaning of table

context or tackle the challenges in recommending multiple types

of analysis, which are both taken into account by Table2Charts in

an end-to-end approach using large-scale human created corpus.

Chart Recommendation is an important branch in analysis

recommendation. Lots of visualization recommendation systems

heavily rely on hand-crafted heuristics and rules, such as Voy-

ager [22] and DracoLearn [13]. Data-driven approaches are be-

coming popular in recent learning-based systems such as Deep-

Eye [9], Data2Vis [4] and VizML [8]. In ğ4.2, we discussed DeepEye,



Table 5: Comparisons among Different Chart Recommending Systems

System Reco Tasks Learning Approach Models Dataset 𝑁𝑑𝑎𝑡𝑎 Data Source Data Generation

Table2Charts
Data queries +

Design choices

End-to-end chart generation

as action token sequence

CopyNet as deep

Q-network

(full table, charts)

pairs

165k tables with

266k charts
Web Excel files Human

VizML Design choices 5 classification tasks
Fully-connected

feed-forward NN

(partial table, charts)

pairs
119k tables

Plotly community

feed
Human

DracoLearn
Data queries +

Design choices

Soft constraints/rules weights

for clingo ASP solver
RankSVM Pairwise comparison 1100 + 10 pairs Various

Rules →

Annotations

Data2Vis
Data queries +

Design choices

End-to-end chart generation

as JSON string sequence

Character-level

seq2seq NN

(full table, charts)

pairs

11 tables with

4300 charts

Tool

(Voyager)

Rules →

Validations

DeepEye
Data queries +

Design choices

1. Good/bad classification

2. Ranking

1. Decision tree

2. LambdaMART

1. Good/bad chart labels

2. Pairwise comparison

42 tables with

1. 33.4k labels

2. 285k pairs
Various

Rules →

Annotations

Data2Vis, DracoLearn and VizML as baselines. More of their differ-

enceswith Table2Charts are summarized in Table 5. DracoLearn and

DeepEye both learnt from low quality data and depended on com-

plex rule designs. Data2Vis suffered from naive model of character-

level seq2seq generation of Vega-lite [15] JSON string. VizML only

considered design choices without handling data queries.

Structured Prediction: Filling chart templates and generating

action sequences is a structured prediction problem. There are lots

of related work such as NL QA and Text2SQL [18]. Table2Charts is

inspired by [7, 24] to design an encoder-decoder architecture with

copying mechanism as a function approximator.

Representation Learning and Pre-training: The word em-

bedding [1] and pre-training paradigm [3] in NLP inspired us to

learn pre-trained table representations for multiple tasks [23]. The

table field embedding could be useful for more down-stream data

analysis tasks including recommendation of other types of analysis.

6 CONCLUSION

In this paper, we propose the Table2Charts framework to solve

single and multi-type chart recommendation tasks considering both

data queries and design choices. Through copying from table fields,

shared table representations are learnt to enhance performance and

efficiency for all chart types. We believe the proposed techniques

can be widely used for data analysis tasks on tables in the future.
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A TABLE2CHARTS FRAMEWORK DETAILS

In this section, we will dive into the details of the table-to-sequence

problem formulation in ğ2.2 with the corresponding Markov deci-

sion process. Also, the input token features to the input embedding

network of Figure 4b in ğ3.1will be listed for your references. Finally,

we will describe the companion heuristic beam searching algorithm

to the DQN. Core code of Table2Charts and part of the test data

can be found at https://github.com/microsoft/Table2Charts.

A.1 Markov Decision Process (MDP)

As described in ğ2.2, the MDP for chart generation is based on the

one for pivot table that was first defined by [24].

Definition 3 (Chart Generation MDP). For a table D, we adopt

the definitions in ğ2.1 and ğ2.2 to describe the next-token chart

sequence generation MDP:

• State space is S+
D

= {𝑠 | 𝑠 ∈
⋃∞

𝑙=1
AD

𝑙 , 𝑠 is legal}, which

can be viewed as a forest with chart type tokens (see ğ2.1) as root

nodes (initial states) of the trees. S+
D

contains all the prefixes of all

the possible legal chart sequences that follow the chart templates.

• Action space AD : The legal actions for a given state 𝑠 are

AD (𝑠) = {𝑎 | 𝑠𝑎 ∈ S+
D
,∀𝑎 ∈ AD }.

• State transition is deterministic. The transition probability

from 𝑠 to 𝑠 ′ by taking action 𝑎 ∈ AD (𝑠) is:

𝑃D (𝑠, 𝑎, 𝑠 ′) =

{

1 if 𝑠 ′ = 𝑠𝑎,

0 otherwise.

• Reward function 𝑅D is designed to reflect if a user-created

sequence is successfully generated:

𝑅D (𝑠, 𝑎, 𝑠 ′) =

{

1 if 𝑠 ′ = 𝑠𝑎 and 𝑠 ′ ∈ GD ,

0 otherwise.

HereGD is a subset ofS+
D
which contains exactly the charts created

by user for D. (As first mentioned in ğ2.2, T +
D

is the set of all the

prefixes of all the target sequences in GD .)

• Discount rate 𝛾 = 1 so that the length of a chart sequence

has no impact on its rewards.

According to Bellman optimality equation, one can easily find the

optimal action-value function (the expected discounted return for

the optimal policy):𝑞∗ (𝑠, 𝑎) = 𝑅D (𝑠, 𝑎, 𝑠𝑎)+𝛾 max𝑎′∈AD (𝑠𝑎) 𝑞∗ (𝑠𝑎, 𝑎
′)

=

{

1 if 𝑠 ′ = 𝑠𝑎 and 𝑠 ′ ∈ T +
D
,

0 otherwise.
In other words, 𝑞∗ (𝑠, 𝑎) equals to 1

if and only if 𝑠𝑎 is a prefix of a target sequence. As described in ğ2.2,

the rest of the problem is to learn a good approximator for 𝑞∗ (𝑠, 𝑎).

A.2 Token Features for Input Embedding

As shown in Figure 4b, token embedding vector consists of:

Semantic Embedding. Semantic embedding features are cal-

culated from the header name of a field (e.g., table header or data-

base attribute string). In this work, we adopt FastText [1] with

𝑣𝑜𝑐𝑎𝑏𝑠𝑖𝑧𝑒 = 200, 000 and 𝑒𝑚𝑏𝑒𝑑𝑠𝑖𝑧𝑒 = 50 for semantic embedding.

If there are more than 1 words in the field name, the embedding of

all words are averaged.

Field Categories. There are five types of categorical features

which are adopted in this work.

(1) Token type shows the type of a token in an analysis se-

quence, which includes {PADDING, SEP, FIELD, GRP, Line,

Bar, Scatter, Pie, Area, Radar}.

(2) Segment type shows to which segment a token belongs in an

analysis sequence. This categorical feature can be {PADDING,

X, Y, GRP, OP}. OP corresponds to SEP and chart type tokens.

(3) Field type shows the type of a field, which includes {Unknown,

String, Year, DateTime, Decimal}.

(4) Field role shows whether a field could be one of the left head-

ers of a cross table (detected during source table restoration).

The options include {Invalid, Header, Value}.

(5) Grouping operation corresponds to ⟨grp⟩, which includes

{Invalid, Cluster, Stack}.

Data features. We adopt the 16 statistic features in [24], and

design 15 new features: SumIsIn01, SumIsIn0100, Range, Variance,

Covariance, AbsoluteCardinality, MedianLength, LengthStdDev,

AvgLogLength, ArithmeticProgressionConfidence, GeometricPro-

gressionConfidence, Skewness, Kurtosis, GiniCoefficient, NRows.

All features except AvgLogLength are calculated for numerical

fields. All applicable features are calculated for string fields. Most

data features are ranged in [0, 1], and for those whose range may be

very large, we normalized them by their 99th percentile numbers in

the Excel chart corpus. Data statistic features for non-field tokens

remain empty (their values are assigned as zeros).

A.3 Heuristic Beam Searching

In search sampling training and beam searching inference stages,

we adopt and customize a drill-down beam searching algorithm [24].

It takes the following steps to generate chart sequences:

(1) Initially, the searching frontier only contains the sequence(s)

that each consists of one specified chart type token from

{[Line], [Bar], [Scatter], [Pie], [Area], [Radar]}. Chart

types are chosen according to the training or inference task12.

(2) For each round, the top-𝐵𝑒𝑎𝑚𝑆𝑖𝑧𝑒 scored partial / incomplete

sequences in the frontier will be popped and extended as

described below.

(a) For each state in the beam, greedily drill down (choose

𝑎 with the highest 𝑄 (𝑠, 𝑎) to append) until a complete

sequence is generated. The complete sequence is put into

the result ranking list with 𝑄 (𝑠, 𝑎) as its score. Each non-

optimal state 𝑠𝑎 (𝑎 ∈ AD (𝑠)) from each expansion (one

calculation of 𝑄 (𝑠,AD )) is put into the frontier also with

𝑄 (𝑠, 𝑎) as its score.

(b) No more rounds and stop searching if the number of ex-

pansions exceeds 𝐸𝑥𝑝𝑎𝑛𝑑𝐿𝑖𝑚𝑖𝑡 .

As mentioned in ğ2.1, to restrict heuristic beam searching and

eliminate some nonsense recommendations, hard constraints are

defined in chart templates. For example, the data type of a y-field

is forbidden to be string type. During training and inference, these

hard constraints are also applied by removing illegal actions from

AD (𝑠) for each expansion in the heuristic beam searching.

This also allows users to specify more constraints on searching.

For example, a user could select interested fields from a table and

the beam searching can use exactly these fields to suggest charts.

12In separate training, transfer learning and single-type inference, only one chart type
is used; while in mixed training and multi-type inference, all major types are used.

https://github.com/microsoft/Table2Charts


Table 6: Hyper-parameters of CopyNet Models Sizes.

Model Layers Input Dim Hidden Dim Total

Size Encoder Decoder Encoder Decoder Encoder Decoder Parameters

Small 2 1 192 192 128 128 ~0.8M

Medium 2 1 320 256 192 192 ~1.8M

Large 4 1 384 512 224 256 ~4.9M

B TRAINING AND EVALUATION DETAILS

In this section we elaborates detailed setups of experiments in ğ4 for

Table2Charts and other baseline methods, including DeepEye [9],

Data2Vis [4], DracoLearn [13] and VizML [8].

B.1 Training Details

B.1.1 Training Table2Charts. The training process of Table2Charts

consists of 30 epochs of teacher forcing followed by 5 epochs of

search sampling. First, hyper-parameters of the DQN model are

selected by conducting a series of preliminary experiments. For

semantic embedding (shown in Figure 4b), two pre-trained NLP

embeddingmodels are considered: FastText [1] with embedding size

of 50 and vocabulary size of 200000, and BERT [3] with embedding

size of 768 and vocabulary (subwords) size of 30522. Besides, we

consider three different DQN sizes, with different hidden state

dimensions and different number of encoder layers (see Table 6).

To choose embedding model and DQN size, we compare their

six possible combinations after the teacher forcing training stage

on multi-type task. Results show that compared to FastText, BERT

increases R@1 for about 2% (from 13.07% to 14.97%), but doubles

the training time. Similarly, R@1 of łsmall", łmedium" and łlarge"

models are 13.07%, 13.30% and 15.37% respectively. The łlarge"

model gains about 2% in recalls while the number of parameters is

2.5× łmedium" or 6.1× łsmall" model. To make a trade-off between

performance and training costs, we use the FastText embedding

and the "medium" model size in all experiments in ğ4.

The beam searching hyper-parameters (𝐵𝑒𝑎𝑚𝑆𝑖𝑧𝑒 ,𝐸𝑥𝑝𝑎𝑛𝑑𝐿𝑖𝑚𝑖𝑡 )

are fixed to (4, 100). For neural network tuning, we use Adam opti-

mizer with (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 , 𝛽1, 𝛽2, 𝜖 ,𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦) set to (1𝑒4, 0.9,

0.999, 1𝑒 − 8, 0.01). Due to GPU memory limitations, for all experi-

ments the batch size is set to 512. During the back propagation at

each step, gradients from each process are averaged.

B.1.2 Training Data2Vis. To train and evaluate Data2Vis, we trans-

form Excel and Plotly data to JSON strings. Following data prepara-

tion code fromData2Vis, table input is a JSON dictionary containing

key-value pairs of field keys to one randomly sampled row, and

chart output is a JSON dictionary in a simplified Vega-lite format.

For each (table, chart) pair, two samples are generated by sampling

two rows from the table. In total, there are 180383 training samples.

Data2Vis uses a character-level seq2seq model with strings as

input and output. We set its encoder to be a 1-layer bidirectional

LSTM with hidden dimension 256, and decoder to be 2-layer LSTM

with hidden dimension 128. These choices make sure the size of the

model (~1.94M) is comparable to the that of Table2Charts (~1.8M).

Following the training configurations of Data2Vis, Adam op-

timizer is used again. According to our Excel corpus, 98% of the

source table JSON strings have fewer than 471 characters, while 99%

target chart JSON strings have fewer than 130 characters. Therefore,

the maximum source length and target length are set to 500 and

130. The vocabulary sizes of source and target are 98 and 42. The

model is trained for nearly 30000 steps, with a batch size of 16.

B.1.3 Training VizML. As mentioned in ğ4.2.1, VizML focuses on

design choices and does not provide models for data queries. We

re-train VizML models on its Mark Type task (corresponding to

chart type) and Is on X-axis or Y-axis task (corresponding to field

mapping), and change its Mark Type task from 2, 3, and 6 classifica-

tion to 4 classification (including line, scatter, bar, pie chart). These

models make predictions for one field at a time. So only the labelled

fields (selected in user-created Excel charts) are kept for training.

Field feature extraction process and model hyper-parameters are

identical with the original VizML paper and source code.

B.2 Evaluation Details

B.2.1 Calculating Recall at Top-k. In this section, we elaborate how

recall numbers are calculated on data queries, design choices and

overall chart recommendation tasks in ğ4.2 and ğ4.3.

On data queries, field selection is compared with ground truth.

Given a table, if the chosen field set of any top-𝑘 recommended chart

matches that of any user-created chart of the table, this table is con-

sidered to be successfully recalled w.r.t. data queries. Thus, recall at

top-𝑘 of data queries is calculated as𝑅@𝑘 =

#(Tables successfully recalled)
#(Tables)

.

On design choices, we consider chart type, field mapping (i.e.,

map the selected fields onto x-axis and y-axis of a chart), and group-

ing operation (i.e., whether stacked or clustered, only for bar chart).

Given a table and one set of its fields, if any top-𝑘 recommended

chart adopts the field set and matches a user-created chart of the

table, then the field set is considered to be successfully recalled w.r.t.

design choices. Thus, the recall on design choices is calculated as

𝑅@𝑘 =

#(User-created field sets successfully recalled)
#(User-created field sets)

.

On overall evaluation, both data queries and design choices are

considered. The equation for overall evaluation is the same as that of

data queries, while the łtable successfully recalledž here means that

any top-𝑘 recommended chart complete matches any user-created

chart of the table.

B.2.2 Comparing with Baselines. For fair comparisons among chart

reco systems, more evaluation details (in addition to those described

in ğ4.2.1) need to be properly handled. In DeepEye, bar grouping

operations are not considered, and several data transformations

(e.g., dimension breakdown andmeasure binning) are recommended.

To make sure the recommended charts from DeepEye matches the

definitions in our corpora, during evaluationwe ignore the grouping

operations in ground truth and drop the charts with breakdown

and binning operations. In Data2Vis, searching beam size is set to

15 for data query and overall chart recommendation, and set to 30

for design choices. In DracoLearn, same as DeepEye, its weights

for soft constraints are not re-trained using our Excel training set.

In VizML, we only evaluate it on design choices. Given a field

set, if Mark Type and Is on X-axis or Y-axis predictions of all fields

in the set match any of user-created chart, then the field set is

considered to be successfully recalled w.r.t. design choices. Only

R@1 is calculated for VizML because only one result is available.

In Table2Charts, 𝐵𝑒𝑎𝑚𝑆𝑖𝑧𝑒 and 𝐸𝑥𝑝𝑎𝑛𝑑𝐿𝑖𝑚𝑖𝑡 are the same as in

search sampling training (see ğB.1.1).
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