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ABSTRACT
In this work, we study privacy preserving trajectory sensing and
querywhennmobile entities (e.g., mobile devices or vehicles)move
in an environment ofm checkpoints (e.g, WiFi or cellular towers).
The checkpoints detect the appearances of mobile entities in the
proximity, meanwhile, employ the MinHash signatures to record
the set of mobile entities passing by. We build on the checkpoints
a distributed data structure named the MinHash hierarchy, with
which one can efficiently answer queries regarding popular paths
and other traffic patterns. The MinHash hierarchy has a total of
near linear storage, linear construction cost, and logarithmic up-
date cost. The cost of a popular path query is logarithmic in the
number of checkpoints. Further, the MinHash signature provides
privacy protection using a model inspired by the differential pri-
vacy model. We evaluated our algorithm using a large mobility
data set and compared with previous works to demonstrate its util-
ities and performances.
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1 INTRODUCTION
The technology development in localization mechanisms and the
wide spread of mobile devices have enabled the capability to gather
an enormous amount of real-world mobility data. Such data can be
valuable in a variety of ways. Humanmobility patterns can be used
to aid civil planning such as improving transportation systems and
city construction. How people move around in the living space
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can be used for activity recognition, energy management, health
monitoring, just to name a few.

With such enormous trajectory data, we have new challenges
on the front of data management, analysis, and applications. The
motivation of this paper is two folds. The first issue is real-time
mobility sensing and queries, and the second issue is privacy pro-
tection. The two topics are closely related. In almost all past works,
mobility trajectories are first gathered into a trajectory database be-
fore any analysis is done, which does not meet real-time require-
ments. It is a waste of efforts to collect and archive all trajectory
data as traffic congestion or frequent traffic patterns may change
fast and soon become outdated. In addition, user queries for traffic
information generally exhibit spatial and temporal locality – one
cares mostly about the traffic situation near the current location
and cares less about the traffic condition faraway. With both data
locality and query locality in consideration, it is desirable to have
a distributed system to keep data near where it is generated.

Collecting all mobility traces for a long time scale at a central
place may also raise privacy concerns. Human movement trajecto-
ries over a long period of time are surprisingly unique with strong
personal traits. Simply removing the personal identifiers of the
records is far from enough. Frequently visited locations or repeated
motifs can be related to activities that reveal important locations
such as home or work locations [19], which results in the high pre-
dictability of individual locations [39]. Frequent co-location events
can be used to infer social tie structures [44]. Natural motion tra-
jectories have fairly distinctive signatures – even the coarse knowl-
edge of someone’s whereabouts can be used to identify a single tra-
jectory out of a million others [12]. Sanitization of long-term mo-
bility traces is a non-trivial task. In this work, we do not archive
long-term trajectory traces but only keep, in a distributed manner,
mobile entity appearance/traffic situation in recent history.

Our results. Wewould like to address the problem of finding pop-
ular paths in real time, with respect to the current trajectory flow
and recent history. Since the trajectories are naturally spatially
spread out, we develop a distributed sensing framework which
makes use of a set of spatially located checkpoints, (e.g., the road-
side units in vehicular network setting, WiFi hotspots or cellular
towers). These checkpoints can detect and record the mobile enti-
ties (e.g., the vehicle with GPS or people with mobile devices) pass-
ing by. Instead of collecting all trajectories through these check-
points first, we would like to directly work with the checkpoints
and build a distributed data structure that 1) is compact, of modest
size; 2) allows efficient and continuous updates when new traffic
data comes in; 3) answers real-time queries of popular patterns;
4) protects user privacy. Our idea is to collect the trajectory data
at the ‘checkpoints’ by using the MinHash mechanism. In partic-
ular, each mobile entity is assumed to have a unique ID. At each
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checkpoint, all mobile agents that pass by would report the hashed
values of their IDs. Each checkpoint only keeps theminimum hash
value of all agents that pass by in a recent time frame. This is re-
peated by using k independent hash functions at all checkpoints.
The min-hash values at these checkpoints now form a MinHash
signature.

Albeit the simplicity and compactness of the MinHash signa-
ture, it has a number of attractive properties. Namely, the sig-
nature at one checkpoint can be used to estimate the number of
mobile agents that have recently appeared – the larger this num-
ber, the smaller the MinHash value is. For two physically adjacent
checkpoints, the intersection of their MinHash signatures can be
used to estimate the Jaccard coefficient, i.e., the similarity of the
mobile entities they have seen. This is useful for mining popular
trajectories. Last but most importantly, the MinHash signature
protects personally identifiable information, formulated using ε-
differential privacy. If any particular trajectory is removed from a
set of trajectories, the MinHash signature remains the same with
high probability over the random choices made in the hash func-
tions. Thus, with such signatures personally relevant information
is protected, while cumulative traffic patterns can still be effec-
tively extracted.

Our most important contribution is the MinHash hierarchy on
the checkpoints, with which one can efficiently answer popular
path queries. The MinHash hierarchy built in levels takes ran-
domly sampled checkpoints in a recursive manner, where a check-
point on level i appears in level i+1with fixed probability. At each
level, the checkpoints record whether they are ‘neighbors’ on this
level – defined as whether there is a popular path connecting them
without other checkpoints of the same level in between. The inter-
section of all the MinHash signatures along this popular path is
also stored at the two end checkpoints. It turns out that the total
storage requirement of the hierarchy would be near linear in the
number of checkpoints. The depth of the hierarchy is logarithmic
in the number of checkpoints. With such a hierarchy, which is
stored in the checkpoints in a distributed manner, one can issue a
number of queries of all the popular paths between two locations,
the popularity of a given path, as well as all the popular paths start-
ing from one point. The first two queries can be answered in time
only logarithmic in the number of checkpoints while the last one
in polylogarithmic time. Both the MinHash signature and the hi-
erarchy can be made time-evolving.

In this paper, we prove rigorously the above claims. We also
evaluate the MinHash hierarchy with large trajectory sets. Com-
paredwith previous frequent patternmining algorithms (SPADE[51],
PrefixSpan [24]), ourMinHash hierarchy outperforms them in both
computation and storage complexity. As for the communication
complexity of popular path queries, we show our algorithm scales
well with heavy tasks compared to the brute force method.

In the following we start by reviewing the related work. Then
we define the settings, introduce MinHash for trajectory analysis,
and prove that the MinHash signature is privacy preserving. We
thereafter propose the MinHash hierarchy and efficient algorithms
to answer the popular path queries. The performance evaluation
is presented at the end.

2 RELATEDWORK
Frequent pattern mining. The study of spatial temporal pat-
terns that summarize the collective behaviors of moving objects
has been a subject of study under the name of sequential pattern
mining. The frequent sequential pattern (FSP) problem [2] is de-
fined over a database of sequences D, where each element is a
time-stamped set of items called an itemset. And the problem is
to find all sequences that are frequent in D, i.e., appearing as sub-
sequences in a large percentage of all sequences of D. Here a se-
quence α is a subsequence of β if all the elements of α appear in the
same order in β , though not necessarily to be consecutive. This def-
inition has been widely adopted in mining of a variety of data sets,
from DNA sequences to e-commerce. A number of well known
algorithms have also been proposed (e.g., Generalized Sequential
Patterns (GSP) [41], PrefixSpan [24], SPAM [3], IncSpan [8], and
SPADE [51]). Handling trajectories as discrete items is missing one
important aspect of location proximity. Thus in a number of pre-
vious work [17, 28], approximation or clustering is used to group
nearby locations together. In the work above, the temporal dimen-
sion is not considered and instead the trajectories from different
time window are put together to generate the frequent patterns.
This has merit in certain applications that are neutral or blind to
the time dimension. But our setting is different.

Some other works related to frequent pattern mining are called
Convoy Pattern Mining[25, 26]. Convoys are groups of objects that
are density–connected in continuous trajectory snapshots. In [25,
26], Jeung et al. proposed a method to find the convoy by in-
terpolate an object’s location for snapshots and filter-and-refine
the trajectory points. Their method has later been discovered by
Yoon and Shahabi[49] to have the accuracy problem. Yoon and
Shahabi[49] redefined the term to be valid convoy, and proposed
a method called VCoDA to solve the problem. In recent work,
Orakzai et al.[36] suggested a distributed solution of this convoy
problem.

There are also some grid-based works for frequent pattern min-
ing. In [27], Uehara et al. proposed a MapReduce method of a
hierarchical grid with quad-tree search that can detect different
levels of granularity. In [43], Verhein proposed k-STARs, which
is also a hierarchical lattice based method to mine the trajectory
patterns in different resolution.

Existing frequent sequential pattern mining mainly take two
general approaches: the bottom-up Apriori-based approach [41,
51], and the top down FP-growth based approach [23, 24]. The
way that the trajectory data is stored is more similar to the Apriori-
based approach such that frequent paths appear and bubble up in
the hierarchy. While queries to the hierarchy take a more top-
down approach and directly start from paths kept on high levels
of the hierarchy.

Frequent trajectory mining. There is also prior work that con-
siders the temporal relations between events, or patterns that con-
tain both spatial and temporal information [18, 32]. Giannotti et al.
[18] handled GPS trajectories and identify popular regions and
then connected them with the temporal patterns. Liu et al. [32] fo-
cused on trajectory pattern mining in noisy RFID data. The mined
frequent trajectories are used for prediction or classification of the
trajectories [31], labelling of locations [52], or derivingmobile user
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behaviors [33]. MinHashwas used tomeasure the similarity of two
trajectories in [20, 45]. There was no prior work in mining trajec-
tory patterns in a distributed setting as what is done in this paper.
Protecting trajectory privacy. Plenty of work has been con-
ducted to protect the privacy of a single location, when the user
submits a query to location-based services (LBS) on mobile phones.
A nice survey can be found in [9, 38]. For query privacy (i.e., not
identifying the user issuing the query), themost common approach
is to use k-anonymity measure [42] in which the user location is
indistinguishable from at least k − 1 other users. Cloaking boxes
were used [21, 34] in which one user query is packed in a box with
k − 1 other users in the neighborhood. Only the box is sent to
the LBS. For location privacy (i.e, not identifying the location of
a user), one common metric used is location entropy, which char-
acterizes the uncertainty of the location information an adversary
can extract from LBS queries. Most methods use perturbations of
the true locations to confuse the adversary (for example, see [48]).
Notice that the reported location cannot be too far away from the
true location as otherwise the location based query will become
useless. There is a tradeoff of location privacy versus query utility.

Protecting the privacy of the trajectory data is not investigated
as much. Previous work is along the following directions: spatial
temporal cloaking [46, 47], which often suffers from growing size
of the boxes; mixed zones [4, 15] in which users’ pseudonyms are
mixed inside the zone. In the case of protecting privacy during
publication of trajectories to a third party, three ideas have been
mainly used: clustering based [1, 16], generalization based [35] and
adding dummies [30, 50]. In all of them the k-anonymity is used
as a measure of privacy protection. While k-anonymity protects
against identifying an individual in a group of k entries, it does not
provide sufficient protection against attribute – i.e., the link of an
attribute to an individual may disclose sensitive information.

3 SETTINGS AND MODELS
3.1 Network and Privacy Models
Checkpoints. We consider the setting in which n mobile enti-
ties move within a geographical region in which m checkpoints
are spatially distributed. Typically n ≫ m. Each checkpoint can
detect the appearances of mobile entities in close proximity and
maintain a signature as the sketch of the ID set of mobile entities
passing by. We assume that the checkpoints have sufficient den-
sity to distinguish between different trajectories. In particular, we
assume that whenever two different paths meet at v , diverge and
then meet at w again, they each visit at least one other different
checkpoint.
Network Model. The checkpoints, being roadside units, WiFi ac-
cess points or cellular base stations, are naturally connected to
each other by the Internet. We exploit the existing communication
infrastructure and assume that any checkpoint can communicate
with any other checkpoint with unit cost. When we discuss com-
munication cost we count the number of message transmissions
among these checkpoints.
Privacy Model and Adversaries. For privacy protection, we use
the idea inspired by differential privacy [13], which is proposed
for protecting the privacy of a query database. Given a database

and user queries on the database, the queries are answered by a
randomized algorithm which is ε-differentially private if for both
datasets, D1 and D2, that differ on a single element (i.e., data of
one person), and all S ⊆ Range(A),

Pr[A(D1) ∈ S] ≤ eε × Pr[A(D2) ∈ S],
where the probability is taken over the coins of the algorithm and
Range(A) denotes the output range of the algorithm A.

Our model is a bit different. In the database setting, all data is
stored on a trusted server and noise is added to the query result
to ensure that one cannot infer the information of any particular
element. However, if the server is hacked, all the information is
revealed. In our case, trajectory data is stored in a distributed man-
ner, locally at the checkpoints of detection. We assume that the
checkpoints are trusted when they collect data and generate signa-
tures. Even if an adversary collects the signatures from all check-
points, the adversary still cannot infer information about any sin-
gle trajectory with high probability. This is a stronger condition
as any information inferred from the signature will automatically
have the differential privacy property.

As will be described later, we use hash functions in the data
structure. We assume that the mobile entities, as well as check-
points, have the same set of hash functions so they are able to com-
pute the hash values themselves. If needed, the hash functions can
be taken as cryptographic one-way hash functions [37] so that ad-
versaries knowing the hashed values cannot inverse the functions
and recover the IDs of the mobile entities.
Time Evolving Signatures. Trajectories in a long period of time
can reveal personal information, such as frequently visited loca-
tions [12]. This concern is substantially reduced if only short trajec-
tories are kept [40]. Therefore, in addition to spreading trajectory
information spatially on the checkpoints, we work on real-time
settings and partition trajectories by short time intervals. At the
beginning of each time interval, we re-start the hash signatures
(by choosing random seeds). We keep the signatures for the latest
t time intervals. Any information older than t slots away is re-
moved. As time evolves, the oldest signature is overwritten. Both
the length of the interval and the value t are determined by appli-
cations.

3.2 Popular and Consistent Paths
In this work we are mostly interested in paths that are travelled
by a large number of mobile entities (either in absolute value, or a
fractional amount) in a recent period of time. There are a number
of motivations for supporting this type of queries. First, the popu-
lar paths represent an important class of significant patterns in the
trajectory set. If two sets of trajectories are similar, then the popu-
lar paths in these sets must be similar too. Thus comparing popu-
lar paths in two different trajectory sets can be a quick detector of
anomalies. Second, from a user’s perspective, it is often of interest
to know what is the popular (most used) path to go to a given des-
tination. Thirdly, learning about the paths that are travelled a lot
can help with many other city planning applications, e.g., decid-
ing on the location of gas stations, convenient stores, improving
public transportation system, optimizing the road types (one-way,
two-ways) etc. Last but not least, popular paths, by definition, are
typically of less concerns from a privacy perspective.
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Assume there is a path P that goes through the sequence of
checkpoints v1,v2, · · · ,vℓ . Let Ii be ID set of mobile entities that
visited checkpoint vi for 1 ≤ i ≤ ℓ. We introduce two definitions,
ψ -popular path and φ-consistent path, that capture different fea-
tures in traffic patterns.

Definition 3.1. P isψ -popular if there are at leastψ mobile enti-
ties that travel along P , i.e., | ∩ℓi=1 Ii | ≥ ψ .

This definition is similar to the definition of flocks [22] and con-
voys [25], which refer to groups of mobile entities travelling to-
gether during consecutive time slots.

We use the Jaccard similarity coefficient of I1, I2, · · · , Iℓ to de-
fine consistent paths. For two sets A and B, the Jaccard similarity
coefficient is defined as: J(A,B) = |A ∩ B | / |A ∪ B | . We denote
the Jaccard similarity coefficient of P to be J(I1, I2, · · · , Iℓ), the
Jaccard similarity coefficient of the ID sets along the sequence P :

J(I1, I2, · · · , Iℓ) =
|I1 ∩ I2 ∩ · · · ∩ Iℓ |
|I1 ∪ I2 ∪ · · · ∪ Iℓ |

.

Definition 3.2. If the Jaccard similarity coefficient of a path P is
at least φ, we define P as a φ-consistent path.

This is inspired by the idea of moving clusters [29], which is
a sequence of spatial clusters on different time slots, where the
Jaccard similarity of clusters in two consecutive time slots is at
least φ.
Discussions. The ψ -popular path and φ-consistent path capture
different features of traffic patterns. ψ is an absolute value and φ is
a fraction. For example, takeψ = 3,φ = 1/2 and consider the path
P = [1, 2, 3] in Figure 1, where each line represents the trajectory
of a vehicle. In Figure 1(a), the checkpoint 2 is located at a crossing
that sees a lot of vehicles traveling in a different direction such that
the fraction of mobile entities on P , 3/7, does not reach φ. Thus
P is a ψ -popular path, but not a φ-consistent path. On the other
hand, there could be paths with light traffic such that they do not
meet the criteria for aψ popular path, as shown in Figure 1(b). But
if almost all traffic on P follow the same path, this is an interesting
pattern that is captured by theφ-consistent path. φ-consistent path
captures the pattern where a large fraction of traffic follows the
same path, no matter whether the traffic is heavy or light. The two
definitions have their respective merits.

Almost all theoretical results for the φ-consistent path in our
work also apply to theψ -popular path. Therefore in the following
discussion we mainly focus on φ-consistent paths.

1 2 3

(a) ψ -popular, not φ-consistent.

1 32

(b) φ-consistent, notψ -popular.

Figure 1: ψ -popular path versus φ-consistent path. ψ = 3,
φ = 1/2. P = [1, 2, 3].

A useful observation is that any subset of a φ-consistent path P
is also φ-consistent. For any subpath, the intersection of the sets

(i.e., numerator of the Jaccard coefficient) always gets no smaller
while the union of the sets (i.e., the denominator) always gets no
greater. Thus the Jaccard coefficient of a subset of P is no smaller
than the Jaccard coefficient of P .

Thus it is only interesting to consider themaximal φ-consistent
path, which cannot be extended further. In the following we show
a useful property on themaximumnumber ofmaximalφ-consistent
paths that start from one checkpoint.

Lemma 3.3. The number of maximal φ-consistent paths starting
from any checkpoint v is bounded by 1/φ.

Proof. For a maximal φ-consistent path P that goes through
the sequence of checkpoints v1,v2, · · · ,vℓ , we define the set of
supporters U (P) as the ID set of the mobile entities which travel
along P . Precisely,U (P) = ∩ℓi=1Ii , where Ii is the ID set of vi .

We consider all themaximalφ-consistent paths {P1, P2, · · · , Pr }
that start at v1. Since any two such φ-consistent paths are differ-
ent for at least some of the checkpoints, the sets of supporters for
them are disjoint (as one trajectory cannot visit two different paths
simultaneously). Since each set of supporters must have at least
|I1 |φ mobile entities, the total number of such φ-consistent paths
is bounded by r ≤ 1/φ. □

If themaximumnumber ofmobile entities passing by any check-
point is n∗, with the same proof, we have the similar lemma that
the number of maximal ψ -popular paths starting from any check-
point v is bounded by n∗/ψ .

In this paper we consider the following three types of popular
path queries:

• φ-consistent/ψ -popular paths for a source-destination pair.
• All φ-consistent/ψ -popular paths starting from a check-

point.
• The Jaccard similarity coefficient/the mobile entity num-

ber of a path.

4 MINHASH
4.1 MinHash Definition
Given a setT , let h : T → [0, 1] be a hash function that maps mem-
bers of T to distinct numbers drawn uniformly at random from
interval [0, 1]. For any set D ⊂ T , define the value ĥ(D) to be the
MinHash value of D, where ĥ(D) = min{h(x)|x ∈ D} [6, 7]. Min-
Hash can be used to estimate set cardinality and Jaccard similarity
coefficient.
Estimate set cardinality. For any set D ⊂ T , MinHash can be ap-
plied to estimate cardinality |D | ofD [10, 14]. Suppose we use k dif-
ferent hash functions h1,h2, · · · ,hk and ĥ1(D), ĥ2(D), · · · , ĥk (D)
are the k corresponding MinHash values, it is shown in [10] that
(k − 1)/

∑k
i=1 ĥi (D) is an unbiased estimator of |D |. If k ≥ 2 +

1/(δ2η), with probability at least 1 − η,����� k − 1∑k
i=1 ĥi (D)

− |D |
����� < δ |D |.

Estimate Jaccard similarity coefficient. Denote by ĥ(A) and
ĥ(B) the MinHash values of A and B with hash function h respec-
tively. ĥ(A) = ĥ(B) if and only if the element with the minimum
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hash value with respect to h lies in the intersection A ∩ B. That is,

Pr{ĥ(A) = ĥ(B)} = J(A,B).

Given k hash functions, h1,h2, · · · ,hk , we get k MinHash values
for A and B respectively. Let X1,X2, · · · ,Xk be the 0/1 random
indicator variables. Xi = 1 iff ĥi (A) = ĥi (B). Take X =

∑k
i Xi ,

E(X/k) = J(A,B). Thus X/k is an unbiased estimator of the Jac-
card similarity coefficient [6].

In our scenario, we are interested in Jaccard coefficients that are
at least φ. If k ≥ 3 log 2

η /(φδ
2), by Chernoff inequality,

Pr
{����Xk − J(A,B)���� ≥ δ J(A,B)} ≤ 2 exp(−kφδ

2

3
) ≤ η.

That is, with the probability of at least 1 − η,����Xk − J(A,B)���� < δ J(A,B).
Estimate cardinality of set intersections. In the definition ofψ -
popular path, we are interested in the estimation of the cardinality
of set intersections. Combined with the above analyses, for set A
and B, denote J∗(A,B) as the estimation of J(A,B), |A ∪ B |∗ as
the estimation of |A ∪ B |. We can use J∗(A,B)|A ∪ B |∗ to estimate
|A ∩ B |, such that for k ≥ max{2 + 1/(δ2η), 3 log 2

η /(φδ
2)}, with

probability at least 1 − η,�� J∗(A,B)|A ∪ B |∗ − |A ∩ B | �� < 3δ |A ∩ B |.

All above, we would like to remark: 1) MinHash estimation is
robust to the number of appearances of the same element and pro-
duces a count of distinct elements; 2) the error bounds of the above
analyses can be applied to the estimations of the multiple sets; 3)
with MinHash, we can get a good estimation of the Jaccard simi-
larity as well as the cardinality of the set intersections, with space
requirement ofO(k) instead ofO(n), where k only depends on the
approximation error bounds.

The evaluations of the errors in the experiments can be found in
[6, 10]. In the following , we would not explicitly write down the
approximation factor whenever we use MinHash to approximate
the Jaccard coefficient.

4.2 MinHash Signature
Given the set C = {1, 2, · · · ,n} consisting of the IDs of n mobile
entities, we have k hash functions h1,h2, · · · ,hk , each of which
maps mobile entity i ∈ C to distinct uniform random numbers
drawn from U (0, 1), denoted as [h1(i),h2(i), · · · ,hk (i)]. There-
fore, each mobile entity i carries k hash values as its signature.

Denote V = {1, 2, · · · ,m} as the ID set ofm checkpoints. Each
checkpoint j ∈ V also keeps a signature of k values corresponding
to the k hash functions denoted as Sj = [sj1, sj2, · · · , sjk ]. When
a mobile entity i passes by a checkpoint j, the mobile entity’s sig-
nature is passed to the checkpoint. The checkpoint j compares i’s
signature with its current signature; maintains the smaller values
for each hash function as its new signature, to be precise, updates
sjl = hl (i) only if hl (i) < sjl . That is, each checkpoint maintains
thek MinHash values as its signature, as illustrated in Figure 2. We
define this signature to be theMinHash signature of the checkpoint.

0.07
0.13

VSig

0.40

0.77

0.62

0.39

0.81

0.35
0.72
0.53

SSig

0.46

0.70

0.35

0.70
SSig

0.40
0.53

0.07
0.13

Figure 2: When a vehicle passes by a checkpoint, it sends its
signature VSiд to the checkpoint. The checkpoint compares
the received VSiд with its signature SSiд and updates wher-
ever VSiд is smaller.

Since the checkpoint updates the MinHash values correspond-
ing to each hash function only if it receives a smaller one, the
chance of this update event decreases when the number of mobile
entities passing by increases. The total update cost is only loga-
rithmic in the number of mobile entities appearing, as is proved in
[11].

4.3 MinHash Operations
The operations on synopses for distinct value estimation, includ-
ing MinHash, has been studied in [5, 11]. Similarly, we also in-
troduce union and intersection operations in our work. Given
the MinHash signatures of two checkpoints S = [s1, s2, · · · , sk ],
S̃ = [s̃1, s̃2, · · · , s̃k ] , we define the union and intersection as fol-
lowing.
Union. We define the union operation of the MinHash signature
S and S̃ as S ∪ S̃ = [x1,x2, · · · ,xk ] where

xi = min{si , s̃i } for i = 1, 2, · · · ,k .

Theunion operation can be used to estimate set cardinality. This
can be generalized to multiple checkpoints along a road, or in a
certain geographical region to estimate the total number of mobile
entities that have visited this region.
Intersection. The intersection of the MinHash signature S and S̃
is defined as S ∩ S̃ = [y1,y2, · · · ,yk ] where

yi =

{
si if si = s̃i

⊥ if si , s̃i =⊥ or si , s̃i
for i = 1, 2, · · · ,k . ⊥ is a symbol meaning undefined.

The intersection of MinHash signatures offers an estimate for
the Jaccard similarity. Let ω be the number of elements which
are not ⊥ in the result. ω/k approximates the Jaccard similarity
coefficient.

Further, we define the MinHash signature of path P that goes
through v1,v2, · · · ,vℓ , as the intersection of the MinHash signa-
tures of the checkpoints on path P , that is, ∩ℓi=1Svi . Thereafter,
we can calculate the Jaccard similarity of P to tell whether P is a φ-
consistent path. Besides, we can take the union of the signatures
of checkpoints on P to estimate the cardinality of all the mobile
entities passing by any of the checkpoints on P , and multiply the
result with the Jaccard similarity of P to find the number of mobile
entities sharing P . Hence, we can tell whether P is a ψ -popular
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path. The Figure 3 illustrates a toy example of the φ-consistent
andψ -popular paths.
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Figure 3: If φ = 2/6, the path [1, 2, 3] and [3, 4] are both φ-
consistent paths. We can estimate the cardinality of mobile
entities visiting at least one checkpoint on path [1, 2, 3] as
(6 − 1)/(0.14 + 0.07 + 0.13 + 0.03 + 0.11 + 0.03) ≈ 10. Multi-
plied by the Jaccard similarity of the path, 2/6, the number
of mobile entities sharing the path is 3. Hence the path is a
ψ -popular path ifψ = 3.

5 PRIVACY PROTECTION
Assume we want to conduct the trajectory pattern mining within
a time interval [t1, t2], where t2 could be the current time. Each
checkpoint j ∈ V sets all elements in its MinHash signature Sj to
∞ at time t1 and starts to update Sj until time t2. In this interval,
the trajectory of a mobile entity is formed as the sequence of time-
stamped checkpoints it passes by contiguously. Trajectory set D
is the collection of all the n trajectories. The MinHash signature
of the trajectory set D consists of the MinHash signatures of allm
checkpoints in V , denoted by S(D) = [S1, S2, · · · , Sm ].

Now we prove that the MinHash signature of a trajectory set
provides a decent method to protect individual user privacy. We
show that for two sets D and D ′ of trajectories that only differ by
one, they have the same signature with high probability. Here we
require that the total number of mobile entities seen by a check-
point is beyond a minimum requirement. We do not include the
checkpoints before they see at least n′ mobile agents, n′ = Ω(km).
The checkpoints that only see a small number of IDs have a good
chance to reveal information about these mobility traces. In the ex-
treme setting, if only one mobile entity is present, then the entire
mobility trace can be plotted easily. But this is not an interesting
setting in practice. Typically we have a large number of mobile en-
tities moving around in the environment. The number of mobile
entities n is typically much larger than the number of checkpoints
m and k (which is typically a small constant). In this setting, the
MinHash signature satisfies ε-differential privacy. It means adding
one more trajectory to a trajectory set almost changes nothing in
the MinHash signature of the trajectory set, therefore the chance
of identifying a specific trajectory is low.

Theorem 5.1. For two trajectory setD, D̃ where D̃ containsD and
one extra trajectory, the probability of the output of the MinHash
signature S(D), S(D̃) satisfies:

Pr{S(D) = S∗} ≤ eε × Pr{S(D̃) = S∗},

where ε = km/n′. Here each checkpoint sees at least n′ mobile enti-
ties.

Proof. For the newmobile entity in D̃, the probability of its ith
hash value of its signature appearing in the MinHash signature of
a specific checkpoint p is at most 1/n′. Therefore the probability
that the MinHash signature of D̃ being the same as that of D is at
least

m∏
i=1

(1 − 1

n′
)k = (1 − 1

n′
)km ≥ exp(−km

n′
).

Therefore the claim is true. □

The differential privacy property is stronger if each checkpoint
has fewer hash functions, while the accuracy of estimating cardi-
nality or Jaccard similarity is worse. This is a tradeoff between the
privacy and the accuracy.

6 MINHASH HIERARCHY
With the MinHash signature now we propose the MinHash hier-
archy with which we can answer popular path queries efficiently.
The process of constructing a hierarchy structure for theψ -popular
path is almost the same as the process for the φ-consistent path.
We can make two small modifications to change a hierarchy for
φ-consistent paths to a hierarchy for ψ -popular paths. 1) For φ-
consistent path, we take the intersections of the signatures of the
checkpoints on a path to get the Jaccard similarity, while for ψ -
popular path, we also need to take the union of the checkpoint
signatures to estimate the cardinality. Multiplying the cardinal-
ity with the Jaccard similarity, we can tell whether the path is a
ψ -popular path. The additional steps don’t increase the bound of
complexity. 2) In the following analyses for the complexity, if we
change theφ to ψ

n∗ , wheren
∗ is themaximumnumber of mobile en-

tities seen by any checkpoint, we get the bound for theψ -popular
paths.

In the following, we focus on the φ-consistent path. We model
the checkpoints as a directed graph G(V ,E). The node set is the
checkpoint set V . If there is a mobile entity that visits checkpoint
v andw consecutively, there is a directed edge from v tow in E.

To organize theφ-consistent paths, we first define two functions
Path and Sig,then we define the MinHash hierarchy.

Definition 6.1. For any nodes v,w , Path(v,w) contains the set
of all φ-consistent paths from v to w . For a φ-consistent path
P = [v = v1,v2, · · · ,w = vℓ ] ∈ Path(v,w), Sig(P) refers to
the MinHash signature of P , i.e., Sig(P) = ∩ℓi=1Svi .

Definition 6.2. The MinHash hierarchy consists of vertex sets
Vq ⊆ Vq−1 · · · , ⊆ V0 = V , and a directed graph Gi defined on
Vi . The vertex set Vi on level i is a set randomly sampled with
probability β fromVi−1 on the level i − 1. The edge set Ei contains
an edge from v tow if there is at least one φ-consistent path from
v tow without passing through any other node in Vi . Further, we
will store with each edgevw on level i two records, Path(v,w) (the
set of all φ-consistent paths from v tow) and their signatures.

We remark that a path P ∈ Path(v,w) can be represented us-
ing only the sequence of the level i − 1 nodes on P , instead of
using all the checkpoints on P . If there are multiple φ-consistent
paths between two nodes of level i − 1 on P , we can index those
φ-consistent paths and keep the index of the φ-consistent path on
P . This method can save storage, while it needs to recursively visit
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the nodes in the lower levels when reconstructing the φ-consistent
paths.

Lemma 6.3. The total number of levels in the MinHash hierarchy
is O(logm/ log(1/β)), wherem is the total number of checkpoints.

Proof. On level 0, there arem nodes. The chance for each node
on level i − 1 to be selected to level i is β . The expected number of
nodes on level i ismβi . On the highest level of the hierarchy, the
number of nodes is O(1). Therefore, the total number of levels of
the hierarchy is O(logm/ log(1/β)). □

To construct the MinHash hierarchy, on the lowest level, level 0,
we generate a graph G0(V0,E0). V0 is the same as the set V . Any
two checkpointsv,w that are adjacent to each other on a trajectory
would evaluate the intersection of their signatures Sv ∩ Sw . If the
Jaccard similarity of path [v,w] is at least φ, we add an edge (v,w)
to E0. [v,w] is added to set Path(v,w) and we update Sig([v,w]) =
Sv ∩ Sw .

Once the bottom level is constructed, recursively we can con-
struct Gi (Vi ,Ei ) on level i . Given Gi−1(Vi−1, Ei−1), we need to
find the edges on Ei . From each v ∈ Vi , we start a depth first
search to find all the neighbors of v on this level, i.e., the nodes
directly connected to v by a φ-consistent path. In particular, for
each neighbor w of v in Gi−1, we start the depth first search with
each P ∈ Path(v,w). We denote the current path and the MinHash
signatures of the current path as P̃ and S̃ ; at the beginning of the
search, P̃ = P , S̃ = Sig(P). Now, the depth search goes to node w .
If w ∈ Vi , the search terminates and we add an edge (v,w) to Ei
with Path(v,w) set as P̃ and Sig(P̃)← S̃ . Otherwise, for each path
P ′ ∈ Path(w,u) where (w,u) ∈ Ei−1, calculate S̃ ∩ Sig(P ′). If the
Jaccard similarity is greater than φ and P̃ ∩ P ′ has no loop, assign
the result to P̃ , assign S̃ ∩ Sig(P ′) to S̃ and the depth first search
goes to node u. This process will repeat until all neighbors of v on
level i are found. Otherwise, this search terminates. An example
of the hierarchy structure can be found in Figure 4.

1 2 3 4 5 6 7 8

2 5 7

2
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L1 :

L2 :

L3 :

4
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42
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Figure 4: A MinHash hierarchy with 4 levels.

In the following, we will analyze the hierarchy in terms of com-
putational cost and storage cost. First, recall that for each edgevw
inGi we save Path(v,w), which has at least one φ-consistent path
P inGi−1. Such paths are represented by a sequence of checkpoints
in Vi−1. Below we show that there are only a constant number of
them.

Lemma 6.4. The expected number of nodes of level i − 1 on a φ-
consistent path P ∈ Path(v,w), for vw ∈ Ei , is at most 1/β .

Proof. Take the path P from v to w . Suppose that there are b
nodes of Vi−1 on P . None of these b nodes are on Vi and v is the
first node that appears on Vi . Since each node of Vi−1 is selected

to Vi independently with probability β . The expectation of b is
E(b) ≤ ∑

j=1 j(1 − β)j−1β = 1/β . □

Recursively, the number of checkpoints on theφ-consistent path
P ∈ Path(v,w), for vw ∈ Ei , can be bounded.

Lemma 6.5. The expected number of checkpoints on P is at most
1/βi .

Proof. By the same argument, let α be the number of check-
points on P . The last checkpoint is selected to level i but not any
of the earlier ones. The probability for any checkpoint on P being
selected to level i is βi . Therefore, E(α) ≤ ∑

j=1 jβ
i (1 − βi )j−1 =

1/βi . □

Lemma 6.6. For each node v ∈ Vi , the expected number of edges
of v in Gi is at most 1/φ to become φ-consistent.

Proof. Recall from Lemma 3.3 that the number of maximal φ-
consistent path starting from any node v is at most 1/φ. This im-
mediately follows from that. □

Theorem 6.7. For the MinHash hierarchy for φ-consistent paths,
the expected computation complexity of building theMinHash hierar-
chy isO(m/φ2); the expected communication complexity isO(m/φ2);
the expected storage complexity is O(m log(m)/φ), where m is the
number of checkpoints.

Proof. For any v ∈ Vi , we conduct the depth first search to
find its neighbors in Gi . The depth first search terminates at the
time either the neighbor of v on Vi is found or the path is not a φ-
consistent after adding one node. According to Lemma 6.6, there
are at most 1/φ φ-consistent paths originating fromv . Meanwhile,
the expected number of nodes to traverse on level i − 1 for each
φ-consistent path is at most 1/β according to Lemma 6.4. There-
fore, there are at most 1/(φβ) nodes inVi−1 on all the φ-consistent
paths starting fromv ∈ Vi . Since every time we traverse to a node,
it has at most 1/φ neighbors to explore, the computation complex-
ity of the depth first search for each nodev ∈ Vi is at most 1/(φ2β).
In the distributed setting, for each node visited during the depth
first search, there is one unit communication cost. The communi-
cation complexity of the depth first search for each node v is also
at most 1/(φ2β). On level i , the expected number of nodes in Vi
ismβi . Therefore, the expected computation complexity and com-
munication complexity to construct edges on level i are at most
βi−1m/φ2.

With Lemma 6.5, the expected length of a φ-consistent path to
store is at most 1/βi . Therefore, the storage cost on level i ism/φ.

Now, since the MinHash hierarchy can have at most logm lev-
els, summing up everything we get that the expected computation
complexity and communication cost of building the whole hierar-
chy is

∑logm
j=1 βi−1m/φ2 = O(m/φ2).The expected storage cost is∑logm

j=1 m/φ = O(m log(m)/φ). 1 □

The MinHash hierarchy provides a multi-resolution structure
on theφ-consistent paths. We can also show that a longφ-consistent
path is more likely to appear on a high level of the hierarchy.
1Remark that for φ-consistent paths on level i if we just store the checkpoints on
level i − 1, the storage cost is O(m/φ).
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For a φ-consistent path P on the sequence of checkpoints p1,p2,
· · · ,pℓ+1 , we define the length of P as ℓ, the number of hops of
P . For px ,py ∈ Vi , we define that the subpath of P between px ,py ,
[px ,px+1, · · · ,py ], is covered by px ,py , on level i . We are most
interested in the maximal subpath covered by all the checkpoints
of P on level i . Take the example in Figure 4, on level 0, the length
of the maximal subpath covered is 7, on level 1, it is 6, and on level
2, it’s 3.

Theorem 6.8. For any φ-consistent path P of length ℓ, the ex-
pected length of the maximal subpath covered on level i is at least
ℓ/2, for i ≤ log

1/β (ℓ/4).

Proof. Assume we have j nodes on path P selected to level i .
Denote by ℓj the length of the maximal subpath covered on level i .
If ℓj = b, there are (ℓ+1−b)

(b−1
j−2

)
different combinations for the

j nodes. Therefore,

Pr{ℓj = b} =
(ℓ + 1 − b)

(b−1
j−2

)∑ℓ
d=j−1(ℓ + 1 − d)

(d−1
j−2

) .
E(ℓj ) =

∑ℓ
d=j−1 d(ℓ + 1 − d)

(d−1
j−2

)∑ℓ
d=j−1(ℓ + 1 − d)

(d−1
j−2

) =
j − 1
j + 1

(ℓ + 2).

Any checkpoint on P is selected to Vi with probability q = βi .
The probability that exactly j nodes on P are in Vi is

(ℓ+1
j
)
qj (1 −

q)ℓ+1−j , where 2 ≤ j ≤ ℓ + 1. Let ℓ̃ be the length of the subpath
covered on level i with respect to all possible j,

E(ℓ̃) =
ℓ+1∑
j=2

(
ℓ + 1

j

)
qj (1 − q)ℓ+1−jE(ℓj )

= ℓ + 2 − 2

q
+

(qℓ + 2)(1 − q)ℓ+1 − ℓqℓ+2

q

> ℓ + 2 − 2

q
= ℓ + 2 − 2

βi

Therefore, on the level i ≤ log
1/β (ℓ/4), the expected length of the

maximal subpath covered by the nodes on level i is at least ℓ/2.
□

The above theorem means that a φ-consistent path of length ℓ
has a significant portion of nodes covered on levels below the level
log

1/β (ℓ/4).

7 POPULAR PATH QUERY
Now we explain how to use the MinHash hierarchy for answer-
ing φ-consistent path queries. We first discuss a number of useful
structures and operations.

Each φ-consistent path P fromv tow has a canonical representa-
tion, enabled by the MinHash hierarchy. Consider the checkpoints
of the highest level (say i) on P . Assume that there are b of them:
{v1,v2, · · · ,vb }. Then we replace the subpath between v1 and vb
on P by the path v1,v2, · · ·vb on level i . This also partitions the
path P to three parts, the first part P1 from v to v1, the ‘short-
cut’ from v1 to vb on level i , and the last part P2 from vb to w .
Recursively, we also change P1 and P2 to their canonical represen-
tations. In other words, the canonical representation contains the

first upward path in which the checkpoints have increasing levels
(including the highest level) and followed by the downward path in
which the checkpoints have decreasing levels. This representation
will be useful for the query algorithms below.

In addition, we also define two basic search operations.
φ-consistent upward search. In upward search, we perform a
depth-first search from a checkpoint and always search for neigh-
bors of the same level or higher. We start from a checkpointv ∈ V0.
We perform depth-first search until we find some node u whose
level is 1. Beyond u we continue the search on level 1 and repeat
the process above until we hit a node of level 2 or we have visited
all edges. We continue in the same manner.

During the depth-first search we may also record and calculate
the path signature fromv to the current node, and trim the search if
the Jaccard similarity drops belowφ. This is called theφ-consistent
upward search.
φ-consistent downward search. In the downward search, we
perform a similar depth-first search with the upward search but
enforce that the next checkpoint to visit to be of the same level or
lower.

Lemma 7.1. The number of checkpoints in φ-consistent upward
search is O( 1

βφ log(m)).

Proof. The upward search from v will generate a tree rooted
at v such that a path from the root to a leaf of this tree is a φ-
consistent path from v . Each of this path is an upward path, con-
taining nodes of at most log(m) levels. The number of consecutive
nodes of the same level on this path is expected to be 1/β (be-
fore we hit a node of a higher level). Since there are only 1/φ
φ-consistent paths from v , the total number of checkpoints in this
tree is O( 1

βφ log(m)). □

Lemma 7.2. The number of checkpoints in φ-consistent downward
search is O( 1

βφ log(m)).

Proof. The downward search also generates a tree in which a
path from the root to a leaf node is a φ-consistent downward path
fromv . Similarly, the number of nodes on one such path is at most
O( 1β log(m)) and there are only 1/φ φ-consistent paths from v .
Thus the total number of checkpoints in this tree isO( 1

βφ log(m)).
□

7.1 φ-Consistent Path From v Tow
Now we answer the query of all the φ-consistent paths that start
from checkpoint v and end atw .

First we conduct a φ-consistent upward search from v . All the
nodes visited during this modified depth-first search is denoted as
Rv . Meanwhile, we also perform a reversed φ-consistent upward
search from w , by checking all φ-consistent paths that arrive at
w . This is almost the same as the above except that we travel in
the opposite direction of the edges. The set of nodes discovered is
denoted as Rw . An example is illustrated in Figure 4, with green
and orange lines demonstrating two searches and the grey denot-
ing the common nodes during the search. If Rv ∩Rw is not empty,
for any node u in Rv ∩ Rw , we concatenate the φ-consistent paths
fromv tou and the φ-consistent paths fromu tow , in the previous
two upward searches and test if the whole path is φ-consistent. In
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particular, we apply the function Path and Sig to each pair of neigh-
bors in the sequence, merge the subpaths and get the intersection
of the MinHash signatures.

Theorem 7.3. The bidirectional depth-first search algorithm can
find all the φ-consistent paths between two nodes. The number of
checkpoints examined is O( 1

βφ log(m)).

Proof. Consider a φ-consistent path P from v tow . Denote by
u the checkpoint with highest level among all checkpoints on P
(u does not have to be unique). Clearly the subpath from v to u
and the subpath from u to w are both φ-consistent. Therefore u
will surely show up in both depth-first search results. Thus all φ-
consistent paths from v to w will be discovered by the algorithm.
The total number of checkpoints visited immediately follows after
Lemma 7.1. □

7.2 All φ-Consistent Paths From v
To find all φ-consistent paths starting from v , we first perform a
φ-consistent upward search, which gives a tree Tv . For each node
u on Tv , we perform a φ-consistent downward search. The final
outcome gives all the φ-consistent paths from v .

Theorem 7.4. The above algorithm can find all the φ-con-sistent
paths fromv . The number of checkpoints examined isO( 1

β2φ2 log2(m)).

Proof. Every φ-consistent path from v has a canonical repre-
sentation. The upward path is discovered by the upward search
fromv , while the downward path can be discovered from the down-
ward search. Thus all such paths are found.

The total number of checkpoints visited immediately follows af-
ter Lemma 7.1 and Lemma 7.2. □

7.3 Jaccard Similarity of a Path
To find the Jaccard similarity of a path P , we can get the canon-
ical representation of the path. We communicate with the first
checkpoint on P , do an upward search. With the path given, the
checkpoint can find its neighbor on its highest level, communicate
with that neighbor, and repeat this process recursively from the
neighbor until one checkpoint has no neighbor on its highest level
belonging to the path. Thereafter, from that checkpoint we do a
downward search for the neighbor, 1-level lower, on the given
path and repeat this process until we reach the last checkpoint on
the path. We calculate the intersection of the MinHash signatures
of the subpaths while finding the canonical representation. The
communication complexity of finding the canonical represent and
calculating the Jaccard similarity is O( 1β log(m)). Remark if the
Jaccard similarity φ is 0, we can terminate the search and return 0.

8 EXPERIMENTS
In this section, we evaluate ourMinHash hierarchy and algorithms
on the taxi dataset of Shenzhen. First, we analyse the accuracy of
MinHash estimation of Jaccard similarity and set cardinality. We
compare the complexity of constructing MinHash hierarchy with
SPADE [51] and PrefixSpan [24]. Moreover, we demonstrate the ef-
ficiency to answer φ-consistent path queries with MinHash hierar-
chy compared with the brute-force method In the end, we provide
evaluations for privacy preserving properties.

8.1 Data Description
The data used contains taxis’ GPS locations collected every 1.01
minutes on average in Shenzhen. We capture a two-hour dura-
tion with 29, 639 trajectories, choose the checkpoints along the
roadmap, then interpolate the sampledGPS locations on the roadmap,
and represent the trajectories as the sequences of checkpoints pass-
ing by. The average number of checkpoints each taxi visits is
123.91, with the minimum andmaximum number of 31 and 1, 580,
respectively.

8.2 MinHash Performance
We first evaluate the accuracy of the estimation of set cardinal-
ity and Jaccard similarity. For each checkpoint, we calculate the
MinHash estimation of both the ID set cardinality of mobile enti-
ties passing by and the Jaccard similarity between its ID set and
their neighbors’, using different numbers of hash functions k . The
relative errors of the estimations are illustrated in Figure 5(a) and
Figure 5(b), where the relative error is defined as the difference
between the exact value and the estimation divided by the exact
value. We observe that the larger k is, the smaller the error is. In
this work, we choose k = 200 as a reasonable value that balances
the accuracy, the storage complexity, and privacy. When k = 200,
the median relative errors of set cardinality and Jaccard similarity
are 4.57% and 2.55%, respectively.
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(b) Jaccard similarity coefficient.

Figure 5: Relative error of MinHash estimation.

8.3 Privacy Protection
Here we demonstrate the privacy protection ability of our Min-
Hash signature with the numbers of hash functions, mobile enti-
ties and checkpoints. With the different combinations of the three
factors, we choose a trajectory set and get the MinHash signature
of the set, then we add more trajectories into the trajectory set
to find out the probability that the MinHash signature of the new
trajectory set remains the same, in the setting of ε-differential pri-
vacy.

Figure 6 demonstrates the results. The Y-axis is the probabil-
ity that the MinHash signature of the set remains the same after
adding one extra mobile entity with the change of #hash functions
k , #checkpoints m, and #mobile entities n. In Figure 6(a), we ob-
serve that the probability goes down with the increase of k andm.
Figure 6(b) demonstrates the probability goes up with the increase
of n. The results follow Theorem 5.1.

8.4 MinHash Hierarchy
We assign each taxi a unique ID and use k = 200 hash functions to
generate the signature for each taxi. Each checkpoint is assigned
with the levels it belongs to and the neighbors on the lowest level.
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Figure 6: Probability of signatures being the same.

Table 1: Hierarchy structures details

Level Checkpoints Edges
Avg.
subpath
length

Max
subpath
length

0 7,714 11,713 1 1
1 3,874 7,651 2.40 13
2 1,949 4,406 4.40 24
3 961 1,999 6.45 32
4 434 731 8.25 40
5 171 188 9.82 42

All checkpoints update their MinHash signatures when the taxis
pass by. With the MinHash signatures, all the checkpoints on dif-
ferent levels communicate with their neighbors to build the Min-
Hash hierarchy.
Structure. We build the 6-level hierarchy for the φ-consistent
paths recursively where φ = 5%, the chance of each checkpoint
to be chosen to a higher level β = 1/2, as shown in Figure 7. The
details of the hierarchy structure are listed in Table 1. On each
level, we just count the checkpoints that have at least one edge.

Figure 7: L1, L2, and L3 of the MinHash hierarchy structure
for φ-consistent path.

We also build a 6-level MinHash hierarchy for ψ -popular path
with ψ = 50, β = 1/2, with similar statistics as above. We use
the same values for ψ and φ in the rest of experiments. Here,
we examine the accuracy of the MinHash hierarchy. For each
path kept in the hierarchy, we evaluate whether the path is a φ-
consistent path/ψ -popular path with the real mobile entity ID sets
of the checkpoints on the path. If the answer is no, we count it as a
false positive. Meanwhile, we find all the realφ-consistent paths/ψ -
popular paths between checkpoints on each level, if a path is not
included in the hierarchy, we count it as a false negative. The sta-
tistics of the numbers of total paths, false positive paths and false

Table 2: Accuracy of MinHash hierarchy

Algorithm #Total
paths

#False
positive

#False
negative

φ-consistent path 28,316 970
(3.45%)

600
(2.12%)

ψ -popular path 24,839 1,554
(6.25%)

1,222
(4.92%)

Table 3: Hierarchy structures vs SPADE

Algorithm Computation
complexity

Storage for
paths

Storage for
signatures

SPADE 79,838,400 4,382,387 73,432,800

Hierarchy 8,688,200
(10.8%)

63,980
(1.46%)

5,663,200
(7.71%)

negative paths are shown in Table 2. The percentiles in the paren-
theses are the values divided by the number of total paths. With
k = 200, we can achieve enough accuracy for both hierarchies.
The error rate forψ -popular paths is approximately twice the one
for φ-consistent paths, because the estimation of ψ -popular paths
depends on both the estimation of set cardinality and Jaccard sim-
ilarity.
Complexity. Wefirst compare ourMinHashHierarchywith SPADE
[51], which takes the same data format to find sequential patterns
as in our algorithm, where trajectory data are aggregated by check-
points. The algorithm is Apriori-based with the “bottom up” fea-
ture in finding the frequent patterns. It can be used to find both
φ-consistent paths and ψ -popular paths. Here we only demon-
strate the results of φ-consistent paths. The SPADE algorithmwith
MinHash is implemented as following. Denote ℓ-path as the path
with length ℓ. First, we calculate all the φ-consistent 1-paths be-
tween neighboring checkpoints on the lowest level. Remark that
in the original SPADE, the φ-consistent path is obtained by the
set operations of the ID set of mobile entities passing by, while
in this experiment, we use MinHash to replace the set operations
in order to focus on the differences of the algorithms. After ob-
taining the φ-consistent l − 1-paths, we recursively generate the
set of φ-consistent ℓ-paths. For a path P = [v1,v2, · · ·vℓ ], if the
subpath from v1 to vℓ−1 and the subpath from v2 to vℓ are both
φ-consistent, we calculate the intersection of the MinHash signa-
tures of the two subpaths. If the result is φ-consistent, we add P
to the set of φ-consistent ℓ-paths. The process is repeated until no
new consistent paths can be found.

We compare the complexity of building the MinHash hierarchy
and the SPADE algorithm. The computation cost in our experi-
ment is the cost of comparisons. Each comparison of two Min-
Hash values has a unit cost. The storage cost is the space used to
store all the values. The space to store a MinHash value or a check-
point ID is one unit. In our analysis, each checkpoint MinHash
signature has 200 MinHash values. The computation cost of two
checkpoint MinHash signatures is 200, and the storage cost of one
checkpoint MinHash signature is 200. The complexity analysis is
demonstrated in Table 3. The percentiles in the parentheses are
the values of MinHash hierarchy divided by the ones of SPADE.
Since SPADE just grows one node for each step, there are a lot of
overlapping paths to compute and store. Compared with SPADE,
our hierarchy is more efficient in both computation and storage.
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Table 4: Hierarchy structures vs PrefixSpan

Algorithm Computation
complexity

Storage
complexity

PrefixSpan 47,063,962 187,112,931

Hierarchy 7,369,600
(15.7%)

5,022,280
(2.68%)

We also compare our hierarchy with PrefixSpan [24], one of the
most efficient algorithms for sequential pattern mining. Different
from SPADE, PrefixSpan take the whole trajectories of all the taxis
as input and it can only be used to find theψ -popular path. Hence,
PrefixSpan is comparedwith our hierarchy ofψ -popular paths over
the total computation and storage cost. Remark that to adapt to our
problem, we restrict PrefixSpan to detect only contiguous frequent
sequential patterns. The comparison results are in Table 4. We
observe that it takes PrefixSpan a lot of spaces and computations
finding frequent patterns in long sequences, such as trajectories.
Our hierarchy outperforms PrefixSpan.

8.5 Query
Wecompare the communication cost of the queries forφ-consistent
paths usingMinHash hierarchy with the brute force algorithm. The
brute force algorithm answers queries with a breadth first search:
once visiting a checkpoint, the checkpoint communicates with all
the neighbors to see if appending the neighbor to the current path
still results in a φ-consistent path; if the answer is yes, then add
the neighbor to the current path and update the MinHash signa-
ture accordingly; the neighbor starts the same process. The above
process is repeated until the φ-consistent path cannot be extended
any more.
φ-consistent paths from v to w . For the query of φ-consistent
paths between two checkpoints, we run the bidirectional depth
first search(BDFS) on the MinHash hierarchy and compare with
brute force algorithm. We submit 17, 938 queries. In Figure 8(a),
the red points illustrate the communication costs of our algorithm
corresponding to the ones of brute force for each query. When the
communication costs of brute force increase from 100 to 250, the
costs of BDDFS remains between 20 to 30. In Figure 8(b), we show
the average communication costs of brute force and BDFS corre-
sponding to different lengths of the φ-consistent paths between
two checkpoints. The communication costs of brute force increase
with the increase of the length of φ-consistent path, while BDFS al-
most remains the same. We can see in both figures, our algorithm
scales well and outperforms the brute force.
All φ-consistent paths from v. We submit φ-consistent path
queries from all the 7, 701 checkpoints. In Figure 8(a), the blue
line shows the average communication costs corresponding to the
ones of brute force search. Finding all φ-consistent paths from v
with our algorithm needs at most 2 times the communication cost
of finding φ-consistent path between v andw , meanwhile it scales
well with large communication costs of brute force.
Jaccard similarity of a path. To calculate the Jaccard similarity
of a given path with length ℓ, naively, the checkpoints can com-
municate in the sequence of the path with communication cost of
O(ℓ). While with MinHash hierarchy, we just need communicate

to obtain the canonical representation. Remark that for our analy-
sis, we don’t terminate the search, when the Jaccard similarity di-
minishes to 0, to give an upper bound for the communication cost
of our algorithm. As illustrated in Figure 8(c), the average commu-
nication complexity of a path with length ℓ is only O(log(ℓ)).

9 CONCLUSION
In this paper, we proposed a distributed sensing framework by us-
ing the MinHash hierarchy for efficient real-time query of popular
paths among distributed checkpoints. The proposed method nav-
igates through a variety of design objectives including low data
collection cost and highly efficient queries as well as preserving cu-
mulative group behavior while protecting individual user privacy.
We believe that the proposed scheme stands at a unique position
at the interface of collecting, managing, and analyzing real-time,
large scale human motion traces.
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