
Published as a conference paper at ICLR 2023

CASR: GENERATING COMPLEX SEQUENCES WITH
AUTOREGRESSIVE SELF-BOOST REFINEMENT

Hongwei Han1∗ Mengyu Zhou2† Shi Han2 Xiu Li1† Dongmei Zhang2

1Tsinghua Shenzhen International Graduate School, Tsinghua University
2Microsoft Research
hhw20@mails.tsinghua.edu.cn, li.xiu@sz.tsinghua.edu.cn
{mezho, shihan, dongmeiz}@microsoft.com

ABSTRACT

There are sequence generation tasks where the best order to generate the target
sequence is not left-to-right. For example, an answer to the Sudoku game, a struc-
tured code like s-expression, and even a logical natural language answer where
the analysis may be generated after the decision. We define the target sequences
of those tasks as complex sequences. Obviously, a complex sequence should be
constructed with multiple logical steps, and has dependencies among each part of
itself (e.g. decisions depend on analyses). It’s a great challenge for the classic left-
to-right autoregressive generation system to generate complex sequences. Current
approaches improve one-pass left-to-right generation on NLG tasks by generating
different heuristic intermediate sequences in multiple stages. However, for com-
plex sequences, the heuristic rules to break down them may hurt performance, and
increase additional exposure bias. To tackle these challenges, we propose a PLM-
friendly autoregressive self-boost refinement framework, CASR. When training,
CASR inputs the predictions generated by the model itself at the previous re-
finement step (instead of those produced by heuristic rules). To find an optimal
design, we also discuss model architecture, parameter efficiency and initializa-
tion strategy. By evaluating CASR on Sudoku, WebQSP, MTOP and KVRET
through controlled experiments and empirical studies, we find that CASR pro-
duces high-quality outputs. CASR also improves Accuracy on Sudoku (70.93%
→ 97.28%) and achieves state-of-the-art performance on KVRET with Micro F1
score (67.88%→ 70.00%).

1 INTRODUCTION

Encoder

Decoder

Model
Architecture

Parameter
Efficiency

Initialization
Strategy

...

SepEnc, UniEnc

Finetune, Adapter

Restart, Continue

Design

Tasks with complex answers, like Sudoku, WebQSP, MTOP, and KVRET

Encoder

Decoder

Encoder

Decoder

Figure 1: The Overview of CASR Framework. X , Y and Ŷ denote the input, ground truth and
prediction, respectively. The blue arrows show how we iteratively added back the previous-step
prediction Ŷ t−1 to the input for generating refined output Ŷ t.

∗ The contributions by Hongwei Han have been conducted and completed during their internships at
Microsoft Research Asia, Beijing, China.

† Corresponding authors.

1

mailto:li.xiu@sz.tsinghua.edu.cn
mailto:mezho@microsoft.com

Published as a conference paper at ICLR 2023

Sequence generation models are widely used in tasks related to natural, domain-specific and pro-
gramming languages – E.g., question answering (Pandya & Bhatt, 2021), neural machine transla-
tion (Yang et al., 2020), speech recognition (Malik et al., 2021), automatic data analysis (Zhou et al.,
2020), drug discovery (Kim et al., 2021), document summarization (Ma et al., 2020), code search
and generation (Lee et al., 2021), etc.

To achieve better performance on these tasks, recent works often adopt autoregressive (AR) mod-
els (Wu et al., 2016), especially the ones with one-pass L2R (left-to-right) token-by-token gener-
ation / decoding order. Many SOTA-performance generative PLMs (pre-trained language models)
are one-pass L2R models, such as GPT (Radford et al., 2018), T5 (Raffel et al., 2020), Bart (Lewis
et al., 2020), etc. Different from non-autoregressive (NAR) models (Gu et al., 2017) which as-
sume independence among tokens, L2R models assume the conditional probability in the form of
P (Y |X) =

∏
i P (yi|X, y<i) which better captures the left-side dependencies that exist in most

generation tasks. More variations of generation models are discussed in §2.1.

(a) A 9x9 Sudoku Example.
White cells denote blanks, and
the green numbers in them de-
note the ground truth.

3d 1 4b 2
4 2c 3 1a
2g 4 1 3
1 3f 2e 4

(b) A 4x4
Sudoku Exam-
ple. The game
solving order
of a human is
from “a” to
“g”, rather than
row-by-row.

Figure 2: Examples of Sudoku.

However, for many sequence generation tasks,
beyond the left-side dependencies, there are
right-side dependencies in the answer se-
quence, which together lead to multi-hop de-
pendency chains, making left-to-right not the
best order for generation. We call these tasks
as complex tasks, and the answer sequences
of these tasks as complex sequences. Com-
plex tasks (see more details in §2.2, including
Sudoku (PARK), WebQSP (Yih et al., 2016),
MTOP (Li et al., 2021), and KVRET (Eric
et al., 2017), etc..) require better generation
mechanism beyond one-pass L2R generation,
since complex sequences are usually long, dif-
ficult, structured, or logical, which should be
constructed with multiple logical steps.

Human beings solve a complex problem with
respect to its intrinsic order. For example, the
order to write hierarchical answers (such as s-
Expression or SQL code) is usually bottom-up or top-down following the dependencies between
components as discussed by Sun et al. (2020). The order to give an NL response is first analyses
then decisions as discussed by CoT (Wei et al., 2022). The order to solve a puzzle (such as the
example 4x4 Sudoku game in Figure 2) is usually from easy parts to hard parts, because the hard
parts become easier when the easy parts are correctly solved. (That is also verified in §5.1 where
our CASR model learns to solve easy parts before hard ones.) Obviously, people give answers to
different tasks in various orders with respect to all kinds of dependencies.

Mimicking human behavior, some existing works design specific intermediate sequences to solve the
dependency order challenge. E.g., templates (Hua & Wang, 2020) or heuristic rules (Zhang et al.,
2018; Tan et al., 2021) are applied in autoregressive NL generation, allowing models to generate
some parts (intermediate sequences) before the other parts in an answer via iterative refinement
(rather than one-pass decoding). However, 1) it’s really hard to design the best heuristic order and
easy to miss intrinsic dependencies for some tasks, and we need expert knowledge or manual efforts
to design specific heuristic orders for all different tasks. Besides, 2) when using teacher forcing
strategy to parallel train all refinement iterations, additional exposure bias occurs.

In this paper, CASR (Generating Complex Sequences with Auto-regressive Self-Boost Refinement)
framework is proposed by us to: 1) decide intermediate sequences of complex answers for different
tasks in a data-driven way, 2) avoid additional exposure bias. As shown in Figure 1 and will be
discussed in §3, in CASR we design a model architecture (§3.2) to not only take in the original input
X , but also the previous prediction Ŷ t−1 in both training and inference. A special process (§3.1) is
designed to train refinement models M t for each step t = 0, 1, ..., T−1. To enhance the performance
on downstream tasks, CASR models could be initialized with pre-trained language models (§3.3)
such as T5 (Raffel et al., 2020), and even trained in a “Continue” way (§3.4) by initializing M t

2

Published as a conference paper at ICLR 2023

with M t−1. For CASR models to be more efficient, we also explore the parameter-efficient model
designs (SepEnc vs. UniEnc in §3.2), and tuning with parallel adapters (§3.3).

We evaluate CASR (and several baselines) on WebQSP, MTOP, KVRET, and Sudoku in §4, achiev-
ing SOTA performance on KVRET. In detail, CASR improves F1 on WebQSP from 70.81 to 74.81,
EM on MTOP from 78.64 to 81.92, Micro F1 on KVRET from 67.40 to 70.001, and accuracy on
Sudoku from 70.93 to 97.28. We find the optimal CASR design (§4.2) is “Fine-tuning” “SepEnc”
with “Continue” strategy. We also do empirical studies on complexity (§5.1), attention map (§5.2),
and visualize cases (§5.3). Then we find that, CASR benefits hard sequences more than easy ones,
and CASR can indeed correct the wrong part of the previous prediction according to other parts it
depends on (as shown in Figure 8).

In summary, our major contributions are: First, we point out the challenge to generate com-
plex sequences due to the existence of multi-hop dependency chains and conduct a comprehen-
sive review on existing iterative refinement methods. Second, we propose an autoregressive self-
boost refinement framework, CASR, to decide intermediate sequences of complex answers in a
data-driven way. The code of CASR framework is open sourced in the repository at https:
//github.com/RalphHan/CASR. Third, we conduct experiments and empirical studies on
four complex tasks to show CASR works and interpret how it works.

2 RELATED WORK

Table 1: The Objectives of Sequence Generation Methods.
Method Objective
NAT (Gu et al., 2017)

∏
iP (yi|X)

INAT (Lee et al., 2018)
∏

iP (yti|X, Ŷ t−1)
Levenshtein (Gu et al., 2019) Imitate an expert policy to delete and insert
L2R (Wu et al., 2016)

∏
iP (yi|X, yi−1, ..., y1)

XLNet (Yang et al., 2019)
∏

iP (yzi|X, yzi−1, ..., yz1)

Bidirectional (Zhang et al., 2018)
∏

iP (yi|X, yi+1, ..., yn) ·
∏

iP (yi|X, yi−1, ..., y1, CR2L)
Progressive (Tan et al., 2021)

∏
iP (yti|X, Y t−1, yti−1, ..., y

t
1)

Ours
∏

iP (yti|X, Ŷ t−1, yti−1, ..., y
t
1)

Table 2: The Number of
Samples in Train, Dev,
and Test Splits of Web-
QSP, MTOP, KVRET,
and Sudoku.
Task Train Dev Test
WebQSP 2673 309 1639
MTOP 15667 2235 4386
KVRET 6291 777 808
Sudoku 800K 100K 100K

2.1 SEQUENCE GENERATION METHODS

In recent years, many studies have been made on seq2seq generation. For input X and target Y
sequences, the ultimate objective is to maximize P (Y |X). As shown in Table 1, different method
formulates the objective differently. These methods can be divided into non-autoregressive (row
1-3) and autoregressive (row 4-7) ones. Highly related ones are run as baselines in Table 5.

NAT (Gu et al., 2017) assumes that each token in sequence Y is mutually independent from each
other, thus formulating P (Y |X) as

∏
i P (yi|X). To reduce the modeling bias in NAT, iterative

refinement is applied on answers in INAT (Lee et al., 2018). Levenshtein Transformer (Gu et al.,
2019) further breaks down each refinement step into deletion, insertion, and classification so as to
allow the model to edit the generation in a non-autoregressive way. Despite their efficiency, non-
autoregressive models perform relatively poor comparing to autoregressive ones (see §4.4).

L2R (Wu et al., 2016) generation tries to decode from left to right, which is also adopted by
GPT (Radford et al., 2018), basic transformer decoder (Vaswani et al., 2017), VAE decoder (Yu
et al., 2020), and RNN decoder (Xu et al., 2015; Xia et al., 2017). XLNet (Yang et al., 2019) allows
the model to generate with any given order Z, but cannot decide by itself the best order. Bidirec-
tional decoder (Zhang et al., 2018) generates backward (R2L) then forward (L2R), which handles at
most 2-step logic. It trains an additional R2L decoder from scratch, without leveraging generation
capabilities of PLMs as in CASR (see §3.3).

PAIR (Hua & Wang, 2020) is used in controlled text generation with a template (constructed from
a set of provided key phrases and placeholders) as input. It fills and refines the placeholders in
an auto-regressive way. The template, the sequence length and position of placeholders remain

170.00 achieves the SOTA for micro f1 on KVRET, and the previous SOTA is 67.88 (Xie et al., 2022).

3

https://github.com/RalphHan/CASR
https://github.com/RalphHan/CASR

Published as a conference paper at ICLR 2023

unchanged during refinement. Similarly, chain of thought prompting (Wei et al., 2022) constructs
the intermediate process through manually provided templates. These two methods are not chosen
as baselines in §4 because they both require expert designs for each specific task.

Progressive generation (Tan et al., 2021) is proposed to remove the requirement of templates and
the limitation of fixed length during refinement. It breaks down the vocabulary into multiple stages
according to word importance (average of tf-idf). Important words are generated first during early
refinement steps, while other words (both important and unimportant) are generated later. Note that
in Table 1, Y t−1 (row 7) denotes the intermediate sequence produced by the heuristics of progressive
generation, but Ŷ t−1 (row 8) is the previous prediction generated by our CASR model (see §3).

2.2 TASKS WITH COMPLEX ANSWERS

The four complex-answer tasks referred in §1 will be further introduced in this section.

WebQSP (Yih et al., 2016) is a classic dataset for KBQA(Knowledge Base Question Answering).
The input consists of a knowledge graph and an NL query, and the output is an s-Expression which
can be executed on the knowledge graph. The SOTA method of WebQSP (F1=83.6%) is ranking
with bootstrapping negative samples (Ye et al., 2022).

MTOP (Li et al., 2021) is a benchmark for comprehensive multilingual task-oriented semantic pars-
ing. The input consists of a list of API calls and an NL query, and the output is a tree-based TOP
Representation that can be executed.

KVRET (Eric et al., 2017) is a benchmark for table conversation. The input consists of a table and
an NL query, and the output is an NL response corresponding to the dialog. The SOTA method of
MTOP (EM=86.78%) and KVRET (Micro F1=67.88%) is multi-task (20+ tasks) prefix tuning with
T5-3B as the backbone (Xie et al., 2022).

Sudoku (PARK) is an open dataset on Kaggle. Its game target is to fill the blanks correctly with the
constraint that any two numbers in the same row, column, and house shouldn’t have the same value.
We choose Sudoku as an intuitive toy task for better demonstration of ideas in this paper.

Examples of WebQSP (Figure 5), MTOP (Figure 6) and KVRET (Figure 7) are shown in Appendix
§A. The number of samples in each split of the four tasks is shown in Table 2.

3 CASR FRAMEWORK

As shown in Figure 1 and introduced in §1 and §2.1, the key idea of CASR framework is to take the
previous-step prediction Ŷ t−1 as part of the current-step (t) input for generating a refined output Ŷ t.
The iterative inference process in CASR follows the idea: As shown in Algorithm 1, the prediction
at castep t is Ŷ t (0 ≤ t < T) generated by the corresponding CASR model M t, where the input
to M0 is the original input X , and the input to M t (t > 0) is (X, Ŷ t−1). Following the notions in
§2.1, X , Y , and Ŷ denote the input, the ground truth and the prediction, respectively. The iterative
refinement process in CASR will take at most T casteps (CASR steps).

The undetermined M t models in the CASR inference process lead to more questions: 1) How to
design the training process and objectives that match the inference process? 2) How to design
CASR model architecture that leverages existing PLMs and takes the extra Ŷ t−1 as input? 3) When
leveraging a large PLM, can we train and save CASR models M t with less parameters? 4) Can
the training and inference process be more effective by exploiting the relationships among CASR
models M t of each castep? In the following, we will discuss these problems one by one.

3.1 TRAINING PROCESS

As formulated in Algorithm 2, the training process is also iterative.

At the 0-th castep, we train the model M0 normally on train set with the objective to maximize
P (Y |X) (as discussed in §2.1). When the training is done, we use M0 to generate prediction Ŷ 0

for each X in train and dev sets with beam searching (Ney et al., 1987).

4

Published as a conference paper at ICLR 2023

At the t-th castep (0 < t < T), we train M t to refine the last prediction Ŷ t−1. The objective
becomes maximizing P (Y |X, Ŷ t−1) on train set. After training, we generate Ŷ t on all train and
dev sets to compose the samples (X,Y, Ŷ t) for the next castep t+ 1.

After the training process, T versions of CASR model M t (0 ≤ t < T) are available for the
inference process. Because the distribution of Ŷ t−1 could change with t, and different casteps may
learn different refinement patterns, by default all the T versions are saved.

In the following, we will discuss more details of the algorithms on M t model architecture (§3.2),
tuning (§3.3), and initialization (§3.4). More discussions on result selections are in Appendix §B.

3.2 MODEL ARCHITECTURE

SepEnc+Fine-tune UniEnc+Fine-tune

SepEnc+Adapter UniEnc+Adapter

E1 E2
D

X 1-tŶ

AE1 AE2

AD

E
D

EE
D

AE

AD D
E

X 1-tŶ

X 1-tŶX 1-tŶ

AE and AD denote adapters of encoder and
decoder. Blue and gray segments are the

parameters to be trained and frozen, respectively.

Figure 3: Model Architectures and Parame-
ter Efficiency Choices.

t=0 t=1 t=2,3,...,T-1

Restart

Continue

PLM or
Scratch

PLM or
Scratch

Train and
Predict

Train and
Predict

Train and
Predict

Train and
Predict

Train and
Predict

Train and
Predict

The arrows begin at the source of
initial weights of M t.

Figure 4: Initialization Strategies.

The next problem after the training process is how to design a model architecture which could take
(X, Ŷ t−1) as input and generate Ŷ t. Starting from any Transformer encoder-decoder (Vaswani
et al., 2017) based model (such as T5, or an untrained Transformer), in CASR we provide two
modification approaches to take in Ŷ t−1.

As shown in Figure 3, SepEnc has two encoders to encode X and Ŷ t−1 separately (encode be-
fore concat), and UniEnc adopts only one encoder for both inputs (concat before encode). The
output sequence length of SepEnc and UniEnc are both len(X) + len(Ŷ t−1). Let H denote the
encoder output. For SepEnc, H = Concat(Encoder1(X), Encoder2(Ŷ

t−1)), and for UniEnc,
H = Encoder(Concat(X, Ŷ t−1)).

Both approaches have their own advantages: SepEnc naturally handles the distribution differences
between X and Ŷ t−1, while UniEnc requires fewer model parameters. UniEnc forces one encoder
to handle two kinds of sequences with potentially different types of contents and lengths. As a trade-
off, SepEnc brings two times larger encoding part. And the decoder generates answers from H , just
like the classic transformer decoder (Vaswani et al., 2017).

3.3 PARAMETER EFFICIENCY

Both SepEnc and UniEnc approaches in §3.2 could take a PLM (pre-trained language model, such
as T5) as starting point for model parameter initialization (more details in §3.4). In this way, CASR
could leverage the existing knowledge from the PLM to enhance performances on downstream tasks
(e.g., the ones in §2.2).

However, it’s costly to fine-tune all the parameters from a large PLM and save all the parameters of
all the T CASR models M t. Thus, besides the fine-tuning approach, in CASR we also try parameter-
efficient tuning. As shown in Figure 3, parallel adapters (He et al., 2021) could be added to every
encoder and decoder. By adopting adapters, the parameters from the PLM are frozen, and only the
parameters of the adapters are trained. In other words, one only needs to save the adapter (rather
than the whole model) parameters for T times.

5

Published as a conference paper at ICLR 2023

3.4 INITIALIZATION STRATEGY

In Algorithm 2, at the beginning of each castep, we initialize the parameter weights of M t with a
chosen strategy from {Restart, Continue}. Illustrations of each strategy are shown in Figure 4.

“Restart” means initializing each M t with the same PLM weights (or from scratch). For SepEnc
architecture, Both Encoder1 and Encoder2 can be initialized with the parameter weights of the
PLM encoder. “Continue” means initializing with the best checkpoint from the previous castep. In
this way, M t inherits the knowledge from M t−1 to avoid the potential cold start issue at castep t.

In the “Restart” strategy, when comparing the late castep with the early castep, the improvement
is only brought by refinement, rather than the extra continuous training steps (which exist in the
“Continue” strategy). Note that, we design “Restart” mainly to decouple the effects of refinement
from training steps, which is necessary for controlled experiments in §4.

4 EXPERIMENTS

In this section, we run controlled experiments to evaluate CASR designs (§3) on WebQSP (Yih et al.,
2016), MTOP (Li et al., 2021), KVRET (Eric et al., 2017) and Sudoku (PARK) (§2.2), and compare
CASR with high-related baselines (§2.1).

4.1 EXPERIMENT SETUP

In this section, we explain how we design the controlled experiments and reproduce the high-related
baselines. For more details about hyperparameter and resource consumption (number of parameters,
training/inference time, etc.) please see Appendix §C.

4.1.1 CONTROLLED EXPERIMENTS

Table 3: Controlled Experiments of CASR Framework on WebQSP,
MTOP, and KVRET.

CASR Variations WebQSP MTOP KVRET
t Param.E. Init. Arch. F1 Acc. EM BLEU Micro F1 AVG

A0

0

Fine-tune Restart SepEnc

70.81 82.49 78.64 18.33 67.40 63.53B0 Fine-tune Continue SepEnc
C0 Fine-tune Restart UniEnc
D0 Fine-tune Continue UniEnc
E0 Adapter Restart SepEnc 70.20 77.34 73.10 16.38 65.59 60.52
A1

1

Fine-tune Restart SepEnc 73.03 82.92 78.93 18.17 67.65 64.14
B1 Fine-tune Continue SepEnc 74.61 85.07 81.19 18.55 70.00* 65.88
C1 Fine-tune Restart UniEnc 73.14 82.83 78.80 18.80 67.88 64.29
D1 Fine-tune Continue UniEnc 74.16 84.86 81.24 18.06 69.12 65.49
E1 Adapter Restart SepEnc 67.92 77.43 73.21 16.60 65.86 60.20
A2

2

Fine-tune Restart SepEnc 73.09 82.92 78.93 18.26 67.70 64.18
B2 Fine-tune Continue SepEnc 74.81 85.61 81.69 19.12 69.85 66.22
C2 Fine-tune Restart UniEnc 73.14 82.83 78.77 18.78 68.06 64.32
D2 Fine-tune Continue UniEnc 74.32 85.66 81.92 18.34 68.80 65.81
E2 Adapter Restart SepEnc 68.13 77.45 73.23 16.63 65.66 60.22

In Table 3, we apply CASR
(with max castep T = 3)
on the 24-layer generative
PLM T5-base (Raffel et al.,
2020). Controlled exper-
iments A∼ E are run to
compare the variations
of Parameter Efficiency
(§3.3), Initialization Strat-
egy (§3.4) and Model
Architecture (§3.2). The
evaluation metrics (on
test sets) are F1 score
for WebQSP, template
accuracy and exact match
for MTOP, and BLEU
and Micro F1 scores for
KVRET. For each row, the
average (AVG) of all metrics (on test set) is calculated to provide an overall merged score.

The three row blocks A0∼ E0 , A1∼ E1 and A2∼ E2 correspond to M0, M1 and M2 models at
Castep t = 0, 1, 2, respectively. By definitions in §3, row A0∼D0 share the same result because
initialization and architecture choices do not influence M0 models.

Table 4: Sudoku Testing Results.
t Restart Continue Continue w/o Ŷ t−1

0 70.93
1 77.00 85.71 84.28
2 78.69 92.48 89.16
3 79.11 95.66 91.13
4 79.21 97.28 92.09

Since CASR converges on Sudoku with larger T , we evaluate
it separately. In Table 4, We train 12-layer encoder-decoder
transformers from scratch with max castep T = 5. The met-
ric is accuracy (% correctly filled blanks). For a 9 × 9 board,
the input and output sequences of a Sudoku game are both 81-
number serialized sequences. During training, we apply su-
pervision only on blanks and apply constrained generation to

6

Published as a conference paper at ICLR 2023

make sure the model only predicts on blanks. And we fill the predictions back to the blanks of the
input as the combination of X and Ŷ , at the beginning of each castep t > 0. In other words, we use
a special UniEnc to encode the combination, with H = Encoder(Combine(X, Ŷ t−1)). “Restart”
and “Continue” correspond to the same choices as C and D in Table 3. “Continue w/o Ŷ t−1”
denotes that the previous predictions are not put back to the blanks of the input at each castep, which
is equivalent to training the origin model T times steps as usual.

4.1.2 BASELINE COMPARISONS

Table 5: Comparisons between CASR and Baselines.
“NAR” and “AR” denote non-autoregressive and autoregressive refinement.

“–.01–” denotes the metrics are lower than 0.01.
WebQSP MTOP KVRET

Methods F1 Acc. EM BLEU Micro F1 AVG
Xa NAR INAT (Lee et al., 2018) —.01— 0.00
Xb Levenshtein (Gu et al., 2019) 22.54 —.01— 4.51
Xc

AR

CASR B / Dec 4.08 63.02 12.93 7.18 10.17 19.48
Xd Bidirectional (Zhang et al., 2018) 68.43 61.33 57.84 8.98 54.77 50.27
Xe Progressive (Tan et al., 2021) 72.05 80.80 77.04 15.49 64.54 61.98
B0 Finetune 70.81 82.49 78.64 18.33 67.40 63.53
B2 CASR 74.81 85.61 81.69 19.12 69.85 66.22
L2 CASR-L 77.99 87.73 84.54 18.14 68.80 67.44

In Table 5, we run some
high-related baselines as
introduced in §2.1. We
run INAT and Levenshtein
with the official code pro-
vided by fairseq2, where
self-attention layers of the
encoder and the decoder
are initialized with bert,
leaving cross-attention lay-
ers of the decoder trained
from scratch. To decouple
the effect from PLMs and
make a fairer comparison
between NAR and AR methods, we add row Xc , where the decoder of CASR is not initialized
with T5 but from scratch (random weights), marked as “/Dec”. In row L2 , “CASR-L” denotes
changing the backbone of row B2 from T5-base to T5-large. For fair comparisons, the original
backbones in Bidirectional Decoder (GRU) and Progressive Generation (Bart) implementations are
changed to T5-base (same as CASR), and set T = 3 (same as CASR) for Progressive Generation.

4.2 BEST CASR DESIGNS

We achieve the SOTA performance on Micro F1 of KVRET, which is 70.00. The previous SOTA is
67.88 (Xie et al., 2022) based on T5-3B, and we beat it with a smaller T5-base.

For the parameter initialization choices, “Continue” strategy brings better performance than
“Restart”. This is observed by comparing A with B rows, C with D rows in Table 3, and com-
paring “Restart” and “Continue” columns in Table 4.

For the model architectures, by comparing A with C rows, B with D rows, we find that there is
no great performance gap between SepEnc and UniEnc, and SepEnc is slightly better than UniEnc
when combined with “Continue”.

For the parameter efficiency, by comparing E with A rows, we can find that adapter-tuning perform
worse than fine-tuning. As the cost of freezing PLM parameters for efficiency, performance drops
as expected when bringing adapter-tuning.

4.3 ANALYSIS ON SELF-BOOST REFINEMENT

As introduced in §3.4, we design “Restart” to decouple the effects of refinement from fitting the
training set longer than t=0. The variations with “Restart” strategy (A , C and E in Table 3,
“Restart” column in Table 4) demonstrates how self-boost refinement could improve the quality of
generated sequences. Here the improvement is only brought by refinement since CASR models at
all casteps are initialized with the same PLM/Scratch version and take the same training steps.

In Table 4, comparing “Continue” with “Continue w/o Ŷ t−1”, we find that self-boostly feeding
Ŷ t−1 to the model is indeed helpful, which improves the accuracy from 92.09% to 97.28%.

Interestingly, the performance gap between castep 0 and 1 is much larger than the gap between t
to t + 1 (t > 0). One possible explanation is that later refinements have reached the upper bound.

2https://github.com/facebookresearch/fairseq

7

https://github.com/facebookresearch/fairseq

Published as a conference paper at ICLR 2023

As we can see in Table 4, Sudoku requires more refinement steps (5 in our case) for the gap to
converge. This shows there are more logical steps required and more dependencies exist in the
generated Sudoku answers.

4.4 COMPARISON WITH BASELINES

In the NAR block of Table 5, we find the results of NAR methods are not on par with AR methods.
With case study (Figure 10), we find the ability of NAR methods to learn syntax is poor. Comparing
row Xb and Xc , we find the poorness of NAR methods doesn’t come from the initialization of
the decoder. Comparing row Xd , Xe , and B0 , we find that those AR refinement methods using
heuristic intermediate sequences are indeed harmful (worse than directly fine-tuning) for complex
sequence generation. Compare row B2 and L2 , we find larger backbone (T5-base → T5-large)
is overall helpful (UnifiedSKG (Xie et al., 2022) observes the same phenomenon that T5-large is
worse than T5-base on KVRET).

In summary, following conclusions can be drawn for CASR:

• Self-boost refinement leads to better outputs than vanilla AR (one-pass L2R) generation,
NAR refinement generation, and heuristic-rule-based AR refinement generation.

• In general, the best combination is “Fine-tuning” “SepEnc” with “Continue” strategy.

5 EMPIRICAL STUDIES

Table 6: Result on Different Answer Length.
Produced by row B in Table 3 (Finetune+Continue+SepEnc).

∆t denotes the improvement from castep t− 1 to t.
Task WebQSP MTOP KVRET

t Metric F1 Acc Match Bleu Micro F1 AVG ∆t

Short 78.80 85.23 83.65 14.05 65.91 65.53 -
0 Middle 83.07 84.83 80.51 21.93 71.16 68.30 -

Long 50.51 77.31 71.62 15.08 65.69 56.04 -
Short 80.12 87.21 85.50 12.17 65.93 66.19 0.66

1 Middle 86.41 87.19 83.01 19.81 71.51 69.59 1.29
Long 57.52 80.71 74.95 16.33 69.48 59.80 3.76
Short 80.12 87.96 86.25 12.32 64.52 66.23 0.05

2 Middle 86.41 87.53 83.34 19.77 71.79 69.77 0.18
Long 58.13 81.26 75.36 17.00 69.18 60.19 0.39

Table 7: The average diffi-
culty and ratio (sum to 1)
of each correct-solving castep,
produced by the setting of col-
umn “Continue” in Table 4.

t AVG Difficulty Ratio
0 82.80 63.54%
1 86.95 18.48%
2 88.60 8.50%
3 89.83 4.25%
4 90.86 2.51%

5 (failed) 92.21 2.72%

In this section, we conduct empirical studies to interpret how CASR works.

In §5.1, we verify that CASR brings more improvement on more complex sequence. Also, we find
CASR model may implicitly learns dependency because it solves easy parts first during refinements.

In §5.2, the cross-attention map between Ŷ t and Ŷ t−1 implies the informativeness and correctness
of Ŷ t−1. Meanwhile, from a microscopic perspective, each row in the cross-attention map implies
the foundation of changing a component, where the hot-attended parts can be considered as the
cause of changes.

In §5.3, through case studies we show the intermediate steps generated by CASR models.

5.1 ANALYSIS ON COMPLEXITY

CASR helps more on problems with more complexity. For WebQSP, MTOP, and KVRET, we
assume that the complexity of a problem (X , Y) is positively correlated with the length of its an-
swer. Thus, we divide each test dataset into “Short”, “Middle” and ”Long” equal splits according
to len(Y), the length of ground truth answer. As we can see in Table 6, CASR brings the more
improvement to the problems with “Long” answers than “Middle” and “Short” ones.

Take Sudoku as example, we find that CASR solves easy blanks before difficult blanks during
refinements. In late casteps, the generation benefits more from refinement by gradually handling

8

Published as a conference paper at ICLR 2023

complex dependencies. These are shown in Table 7 – As castep t increases, the average difficulty
of remaining blanks increase. Here we formulate the difficulty3 of a blank cell as: Difficulty =
(r−1) · (c−1) · (h−1) where r, c, and h denote the number of blanks in the same row, column, and
house of the blank. Also, we can define the correct-solved castep for a blank: If a blank is correctly
filled at castep t and remains the same for the rest casteps, then the blank is solved at castep t and
t is the correct-solved castep for the blank. Otherwise, by default the correct-solved castep is set to
T . The “Ratio” column in Table 7 means the percentage of blanks is correctly solved at castep t.

5.2 ANALYSIS ON ATTENTION

To measure to what extend does Ŷ t attend to X or Ŷ t−1 in cross-attention, we define the density.
The cross attention map, A, is a tensor that displays how the tokens in Ŷ t attend to H . Therefore,
the size of A is [num-layers, num-heads, len(Ŷ t), len(X)+len(Ŷ t−1)]. We define the density to X

and to Ŷ t−1 as: DX = A[..., : len(X)].mean() and DŶ t−1 = A[..., len(X) :].mean(), which are
the average attention weight among each layer, head, and token, for X and for Ŷ t−1.

Similar to Table 6, We sort the samples according to their DŶ t−1 , and divide a test dataset into
sparse, middle, and dense splits, each holding 1/3 of the total test set. We evaluate the metrics of
Ŷ t−1 on the three splits. We find the performance of Ŷ t−1 increases with DŶ t−1 . Besides, we
compute the average DX and DŶ t−1 over all samples in the test set, and find that DŶ t−1 grows with
t. Therefore, Ŷ t−1 becomes more and more informative thus be attended to by Ŷ t. Please refer
to Table 10 and Table 11 in Appendix §D for more details.

Meanwhile, we draw top-5 positions in cross-attention map (filter out non-blank cells and self) for
each changed cell in Figure 8. As we can see, the corrected cell usually attends to cells in the same
row, column, or house.

5.3 CASE STUDIES

As examples, the intermediate CASR prediction of each castep are shown in Figure 9 of Appendix
§D. We can find that as castep t increases, there is more green (keywords) and less red (mistakes)
parts, which means Ŷ t becomes closer to Y . In the WebQSP case, the wrong part (marked red)
of Ŷ 0 is deleted by late casteps. In the MTOP case, we find that CASR correctly generates the
right part (“[SL:RECIPES INCLUDED INGR EDIENT dairy]”) of the answer before the left part
(“[SL:MET HOD RECIPES recipe]”), which one-pass L2R decoding cannot achieve. For Sudoku,
an interesting phenomenon occurs. Although the wrong predictions (marked red) become fewer
with the growth of castep, some previous correct predictions are modified to wrong ones, and then
modified back. This can be considered a kind of exploration.

We also present the predictions from other experiments (baselines and CASR-L, as discussed in
Table 5) in Figure 10, and we find it a challenge for NAR methods to generate complex sequences.

6 CONCLUSION

In this paper, CASR framework is proposed by us to generate Complex sequences with
Autoregressive Self-Boost Refinement, which can decide intermediate sequences of complex an-
swers in a data-driven way with no need for expert knowledge or manual efforts. Through controlled
experiments, we find the optimal design in CASR is Fine-tuning SepEnc with Continue strategy.
Also, the interpretability of CASR is enhanced via empirical studies on problem complexity and
attention dependencies. CASR sheds more light on the sequence generation methods, especially on
complex tasks (e.g. automatic data analysis and drug discovery), for future research.

3Difficulty: According to this definition, when a blank is the only blank in a row, column, or house, the
difficulty is 0, which makes sense because the blank can be directly solved. The larger r, c, and h are, the more
difficult it is to solve the blank.

9

Published as a conference paper at ICLR 2023

ETHICS STATEMENT

Datasets This work collects the public dataset for research purposes. We believe there is no pri-
vacy issue, because Sudoku, WebQSP, MTOP, and KVRET are accessible to the public.

Models This work leverages T5-base and T5-large, which are pre-trained on C4, a clean corpus.
Therefore, we can make sure that CASR will not produce discriminatory answers.

Computational Resources We train on 4 Tesla V100 GPUs, and the training and inference time
consumption is show in §9, which is acceptable considering the performance gain.

REPRODUCIBILITY STATEMENT

We describe experiment setup in §4.1 and provide the complete details such as hyperparameter (in
§C.1) and resource consumption (in §C.2). please see §C. Meanwhile, we make our code open
source in this repository https://github.com/RalphHan/CASR. These resources should
be sufficient to reproduce results of the paper.

ACKNOWLEDGMENTS

This research was partly supported by Shenzhen Stable Supporting Program
(WDZC20200820200655001).

REFERENCES

Mihail Eric, Lakshmi Krishnan, François Charette, and Christopher D. Manning. Key-value re-
trieval networks for task-oriented dialogue. In Kristiina Jokinen, Manfred Stede, David DeVault,
and Annie Louis (eds.), Proceedings of the 18th Annual SIGdial Meeting on Discourse and Di-
alogue, Saarbrücken, Germany, August 15-17, 2017, pp. 37–49. Association for Computational
Linguistics, 2017. doi: 10.18653/v1/w17-5506. URL https://doi.org/10.18653/v1/
w17-5506.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K. Li, and Richard Socher. Non-
autoregressive neural machine translation. CoRR, abs/1711.02281, 2017. URL http://
arxiv.org/abs/1711.02281.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 11179–11189, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. CoRR, abs/2110.04366, 2021. URL
https://arxiv.org/abs/2110.04366.

Xinyu Hua and Lu Wang. PAIR: planning and iterative refinement in pre-trained transformers for
long text generation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pp. 781–793. Association for Computational Linguistics, 2020.
doi: 10.18653/v1/2020.emnlp-main.57. URL https://doi.org/10.18653/v1/2020.
emnlp-main.57.

Jintae Kim, Sera Park, Dongbo Min, and Wankyu Kim. Comprehensive survey of recent drug
discovery using deep learning. International Journal of Molecular Sciences, 22(18):9983, 2021.

Celine Lee, Justin Gottschlich, and Dan Roth. Toward code generation: A survey and lessons from
semantic parsing. CoRR, abs/2105.03317, 2021. URL https://arxiv.org/abs/2105.
03317.

10

https://github.com/RalphHan/CASR
https://doi.org/10.18653/v1/w17-5506
https://doi.org/10.18653/v1/w17-5506
http://arxiv.org/abs/1711.02281
http://arxiv.org/abs/1711.02281
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://arxiv.org/abs/2110.04366
https://doi.org/10.18653/v1/2020.emnlp-main.57
https://doi.org/10.18653/v1/2020.emnlp-main.57
https://arxiv.org/abs/2105.03317
https://arxiv.org/abs/2105.03317

Published as a conference paper at ICLR 2023

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Ellen Riloff, David Chiang, Julia Hockenmaier,
and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pp. 1173–
1182. Association for Computational Linguistics, 2018. doi: 10.18653/v1/d18-1149. URL
https://doi.org/10.18653/v1/d18-1149.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 7871–7880.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.703. URL
https://doi.org/10.18653/v1/2020.acl-main.703.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta, and Yashar Mehdad. MTOP:
A comprehensive multilingual task-oriented semantic parsing benchmark. In Paola Merlo, Jörg
Tiedemann, and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online, April 19
- 23, 2021, pp. 2950–2962. Association for Computational Linguistics, 2021. doi: 10.18653/v1/
2021.eacl-main.257. URL https://doi.org/10.18653/v1/2021.eacl-main.257.

Congbo Ma, Wei Emma Zhang, Mingyu Guo, Hu Wang, and Quan Z. Sheng. Multi-document
summarization via deep learning techniques: A survey. CoRR, abs/2011.04843, 2020. URL
https://arxiv.org/abs/2011.04843.

Mishaim Malik, Muhammad Kamran Malik, Khawar Mehmood, and Imran Makhdoom. Auto-
matic speech recognition: a survey. Multim. Tools Appl., 80(6):9411–9457, 2021. doi: 10.1007/
s11042-020-10073-7. URL https://doi.org/10.1007/s11042-020-10073-7.

Hermann Ney, Dieter Mergel, Andreas Noll, and Annedore Paeseler. A data-driven organization of
the dynamic programming beam search for continuous speech recognition. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP ’87, Dallas, Texas, USA, April
6-9, 1987, pp. 833–836. IEEE, 1987. doi: 10.1109/ICASSP.1987.1169844. URL https://
doi.org/10.1109/ICASSP.1987.1169844.

Hariom A. Pandya and Brijesh S. Bhatt. Question answering survey: Directions, challenges,
datasets, evaluation matrices. CoRR, abs/2112.03572, 2021. URL https://arxiv.org/
abs/2112.03572.

KYUBYONG PARK. 1 million sudoku games. https://www.kaggle.com/datasets/
bryanpark/sudoku. Accessed: 2022-05-20.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/
papers/v21/20-074.html.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. Treegen: A tree-based
transformer architecture for code generation. In The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8984–8991. AAAI Press, 2020.
URL https://ojs.aaai.org/index.php/AAAI/article/view/6430.

Bowen Tan, Zichao Yang, Maruan Al-Shedivat, Eric P. Xing, and Zhiting Hu. Progressive gener-
ation of long text with pretrained language models. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy

11

https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.eacl-main.257
https://arxiv.org/abs/2011.04843
https://doi.org/10.1007/s11042-020-10073-7
https://doi.org/10.1109/ICASSP.1987.1169844
https://doi.org/10.1109/ICASSP.1987.1169844
https://arxiv.org/abs/2112.03572
https://arxiv.org/abs/2112.03572
https://www.kaggle.com/datasets/bryanpark/sudoku
https://www.kaggle.com/datasets/bryanpark/sudoku
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://ojs.aaai.org/index.php/AAAI/article/view/6430

Published as a conference paper at ICLR 2023

Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, pp. 4313–4324. Association for Computational
Linguistics, 2021. doi: 10.18653/v1/2021.naacl-main.341. URL https://doi.org/10.
18653/v1/2021.naacl-main.341.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large language models. CoRR, abs/2201.11903,
2022. URL https://arxiv.org/abs/2201.11903.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, and Tie-Yan Liu. Delibera-
tion networks: Sequence generation beyond one-pass decoding. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
1784–1794, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
c6036a69be21cb660499b75718a3ef24-Abstract.html.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga, Chien-
Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor Zhong, Bailin Wang, Chengzu Li,
Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir R. Radev, Caiming Xiong, Lingpeng Kong, Rui
Zhang, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text language models. CoRR, abs/2201.05966, 2022.
URL https://arxiv.org/abs/2201.05966.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. In Francis R. Bach and David M. Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, vol-
ume 37 of JMLR Workshop and Conference Proceedings, pp. 2048–2057. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/xuc15.html.

Shuoheng Yang, Yuxin Wang, and Xiaowen Chu. A survey of deep learning techniques for neu-
ral machine translation. CoRR, abs/2002.07526, 2020. URL https://arxiv.org/abs/
2002.07526.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 5754–5764, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. RNG-KBQA:
generation augmented iterative ranking for knowledge base question answering. In Smaranda

12

https://doi.org/10.18653/v1/2021.naacl-main.341
https://doi.org/10.18653/v1/2021.naacl-main.341
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2201.11903
http://arxiv.org/abs/1609.08144
https://proceedings.neurips.cc/paper/2017/hash/c6036a69be21cb660499b75718a3ef24-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/c6036a69be21cb660499b75718a3ef24-Abstract.html
https://arxiv.org/abs/2201.05966
http://proceedings.mlr.press/v37/xuc15.html
https://arxiv.org/abs/2002.07526
https://arxiv.org/abs/2002.07526
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html

Published as a conference paper at ICLR 2023

Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pp. 6032–6043. Association for Computational Linguis-
tics, 2022. doi: 10.18653/v1/2022.acl-long.417. URL https://doi.org/10.18653/v1/
2022.acl-long.417.

Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 2: Short Papers. The Association for Computer Linguistics, 2016. doi:
10.18653/v1/p16-2033. URL https://doi.org/10.18653/v1/p16-2033.

Meng-Hsuan Yu, Juntao Li, Danyang Liu, Bo Tang, Haisong Zhang, Dongyan Zhao, and Rui
Yan. Draft and edit: Automatic storytelling through multi-pass hierarchical conditional vari-
ational autoencoder. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pp. 1741–1748. AAAI Press, 2020. URL
https://ojs.aaai.org/index.php/AAAI/article/view/5538.

Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Rongrong Ji, and Hongji Wang. Asyn-
chronous bidirectional decoding for neural machine translation. In Sheila A. McIlraith and
Kilian Q. Weinberger (eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pp. 5698–5705. AAAI Press, 2018. URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16784.

Mengyu Zhou, Wang Tao, Pengxin Ji, Han Shi, and Dongmei Zhang. Table2analysis: Modeling
and recommendation of common analysis patterns for multi-dimensional data. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-
12, 2020, pp. 320–328. AAAI Press, 2020. URL https://ojs.aaai.org/index.php/
AAAI/article/view/5366.

A EXAMPLES

UnifiedSKG (Xie et al., 2022) did a great job to formulate 21 structured knowledge grounding
tasks into a unified seq2seq form, and we apply their input-output form of WebQSP, MTOP, and
KVRET in CASR. And for Sudoku, we apply their original serialization method, which flattens the
9x9 game table row by row into an 81-dimensional number list. Examples of WebQSP (Figure 5),
MTOP (Figure 6) and KVRET (Figure 7) are shown.

B BEST RESULT SELECTION

The default strategy is to run all T casteps and take the Last output Ŷ T−1 as the final prediction.
However, one could argue that for a specific input X , the best prediction may occur early and more
refinements may hurt. Following this we try to pick the Ŷ t (0 ≤ t < T) with the highest prediction
probability (given by M t): Ŷ = Ŷ tpick where tpick = argmaxtP (Ŷ t|X, Ŷ t−1,M t). However,
that doesn’t always work and we leave it as furture work.

C EXPERIMENT DETAILS

C.1 HYPERPARAMETERS

On WebQSP, MTOP and KVRET tasks, we initialize CASR models with T5-base (Raffel et al.,
2020), a 24-layer generative PLM. We set max casteps T = 3. Max epoch E is set to 2K, 4K, and

13

https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/p16-2033
https://ojs.aaai.org/index.php/AAAI/article/view/5538
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16784
https://ojs.aaai.org/index.php/AAAI/article/view/5366
https://ojs.aaai.org/index.php/AAAI/article/view/5366

Published as a conference paper at ICLR 2023

Request: what school did sir ernest rutherford go to?
Answer: (JOIN (R education.education.institution)
(JOIN (R people.person.education) m.02m7r))

Figure 5: An Example of WebQSP.

Request: does this recipe have dairy?
Answer: [IN:IS_TRUE_RECIPES [SL:METHOD_RECIPES recipe]
[SL:RECIPES_INCLUDED_INGREDIENT dairy]]

IN:GET: MESSAGE, WEATHER, ALARM, INFO_RECIPES, STORIES_NEWS, REMINDER, RECIPES, EVENT, CALL_TIME,
LIFE_EVENT, INFO_CONTACT, CONTACT, TIMER, REMINDER_DATE_TIME, AGE, SUNRISE, EMPLOYER,
EDUCATION_TIME, JOB, AVAILABILITY, CATEGORY_EVENT, CALL, EMPLOYMENT_TIME, CALL_CONTACT, LOCATION,
TRACK_INFO_MUSIC, SUNSET, MUTUAL_FRIENDS, UNDERGRAD, REMINDER_LOCATION, ATTENDEE_EVENT,
MESSAGE_CONTACT, REMINDER_AMOUNT, DATE_TIME_EVENT, DETAILS_NEWS, EDUCATION_DEGREE, MAJOR,
CONTACT_METHOD, LIFE_EVENT_TIME, LYRICS_MUSIC, AIRQUALITY, LANGUAGE, GENDER, GROUP

IN:SEND: MESSAGE

IN:SET: UNAVAILABLE, RSVP_YES, AVAILABLE, DEFAULT_PROVIDER_MUSIC, RSVP_INTERESTED,
DEFAULT_PROVIDER_CALLING, RSVP_NO

IN:DELETE: REMINDER, ALARM, TIMER, PLAYLIST_MUSIC

......

IN:DISPREFER:

IN:HELP: REMINDER

IN:FOLLOW: MUSIC

Figure 6: An Example of MTOP.

Request: where is the closest grocery_store?
Response: we are 4 miles away from whole_foods and from
safeway: which one do you prefer?

poi poi_type address distance traffic_info

pizza my heart pizza restaurant 528 anton ct 5 miles moderate traffic

whole foods grocery store 819 alma st 4 miles heavy traffic

hotel keen rest stop 578 arbol dr 3 miles no traffic

safeway grocery store 452 arcadia pl 4 miles no traffic

midtown
shopping center

shopping center 338 alester ave 3 miles no traffic

round table pizza restaurant 113 anton ct 4 miles heavy traffic

mandarin roots chinese
restaurant

271 springer
street

3 miles moderate traffic

Figure 7: An Example of KVRET.

4K steps for fine-tuning WebQSP, MTOP and KVRET, respectively. For adapter-tuning, we double
the epoch number, which is 4K, 8K, and 8K steps. For the three tasks, we set the batch-size to 128,
learning-rate to 2e-5, max-input-length to 1024, max-generation-length to 128, beam-size to 4, and
evaluate every 2K steps for checkpoint selection.

For Sudoku, we train a 12-layer encoder-decoder transformer from scratch, with d-model=512, ffn-
dim=2048, num-heads=8. We set max castep T = 5 and max epoch E = 10K steps. We set the
batch-size to 1024, learning-rate to 2e-5, beam-size to 2, and evaluate every 2K steps for checkpoint
selection.

C.2 RESOURCE CONSUMPTION

Table 8: CASR Variations and Their Number
of Parameters.

A, E and D de-
note #parameters of adapter, encoder and decoder.

Tuning Init. Arch. #Parameters

A Fine-tune Restart SepEnc T ∗ (2E +D)
B Fine-tune Continue SepEnc T ∗ (2E +D)
C Fine-tune Restart UniEnc T ∗ (E +D)
D Fine-tune Continue UniEnc T ∗ (E +D)
E Adapter Restart SepEnc T ∗A+ (E +D)

Table 9: Training and Inference Time Con-
sumption (take WebQSP as an example)

Method Training(h) Inference(min)
Xa INAT (Lee et al., 2018) 14 2
Xb Levenshtein (Gu et al., 2019) 12 7
Xc CASR B / Dec 8 23
Xd Bidirectional (Zhang et al., 2018) 6 16
Xe Progressive (Tan et al., 2021) 9 16
B0 Finetune 3 8
B2 CASR 10 25
L2 CASR-L 28 141

Table 8 shows the total parameters of each controlled experiment to help the audience understand
our methods. In row E , the total parameters is T*A+(E+D) rather than T*A+(2E+D), because
Encoder1 and Encoder2 are initialized with the same PLM and frozen all the time.

14

Published as a conference paper at ICLR 2023

Table 9 shows the training and inference time consumption of CASR and baselines. Note that
CASR-L runs slowly because we leverage deepspeed4 to avoid OOM.

We train on 4 Tesla V100 GPUs. It takes 10, 22, and 19 hours to fine-tune WebQSP, MTOP and
KVRET, respectively, and 12, 25, and 21 hours to adapter-tune them. Adapter-tuning is intrinsically
hard so it takes more training steps to tune fewer parameters comparing to fine-tuning. For Sudoku,
it takes 32 hours to train from scratch.

D DETAILED RESULTS OF EMPIRICAL STUDIES

Table 10: Performance of last-step prediction Ŷ 1

when castep t=2, produced by the setting of row
B in Table 8, grouped by DŶ 1 , the density to
Ŷ 1.

Task WebQSP MTOP KVRET
Metric F1 Acc Match Bleu Micro F1 AVG
Sparse 51.88 78.52 72.72 16.70 64.17 56.80
Middle 85.84 87.53 83.17 20.18 75.09 70.36
Dense 85.78 89.08 87.63 20.26 85.80 73.71

Table 11: The average density to input X and
previous prediction Ŷ t−1 of the setting of row
B in Table 8. Note that, when castep t=0, the
density to the previous prediction is 0, thus not
listed.
t Task WebQSP MTOP KVRET AVG

1 Input 0.10% 0.11% 0.40% 0.20%
Previous Prediction 0.34% 0.33% 0.84% 0.50%

2 Input 0.09%↓ 0.10%↓ 0.39%↓ 0.19%↓
Previous Prediction 0.61%↑ 0.43%↑ 1.01%↑ 0.68%↑

t=0 t=1 t=2
Figure 8: The Dependencies between Casteps Discovered by CASR. Shown as purple (t=1 attends
to t=0) and blue (t=2 attends to t=1) arrows.

D.1 AN EXAMPLE TO COMPUTE DIFFICULTY OF BLANKS

In the game table Figure 2, for the top-left blank (the ground truth is 6 in green), r=5 (the ground
truths of the row blanks are 6, 9, 4, 8, and 3 respectively), c=6 (the ground truths of the column
blanks are 6, 4, 3, 9, 8, and 2), and h=4 (the ground truths of the house blanks are 6, 9, 7, and 4).
Then, the difficulty to fill the top-left blank is (5-1)*(6-1)*(4-1)=60.

4https://github.com/microsoft/DeepSpeed

15

https://github.com/microsoft/DeepSpeed

Published as a conference paper at ICLR 2023

Task&Input X CASR Predictions Ground Truth Y
WebQSP
input:task: webqsp ; what
school did sir ernest
rutherford go to? ; structured
knowledge: Ernest Rutherford:
m.02m7r | m.068kst
common.topic.notable_types
m.01m9 | (omitted to save
space) | m.018y0w base.act

t=0
(AND (JOIN
common.topic.nota
ble_types m.01nf)
(JOIN (R
education.educatio
n.institution)
(JOIN (R
people.person.educ
ation) m.02m7r)))

t=1
(JOIN (R
education.educatio
n.institution)
(JOIN (R
people.person.educ
ation) m.02m7r))

t=2
(JOIN (R
education.educatio
n.institution)
(JOIN (R
people.person.educ
ation) m.02m7r))

(JOIN (R
education.education.
institution) (JOIN
(R
people.person.educa
tion) m.02m7r))

MTOP
input:task: mtop ; does this
recipe have dairy ; structured
knowledge: IN:GET:
MESSAGE, WEATHER,... |
(omitted to save space) |
IN:FOLLOW: MUSIC

t=0
[IN:IS_TRUE_RECI
PES
[SL:RECIPES_INCL
UDED_INGREDIEN
T dairy]]

t=1
[IN:IS_TRUE_RECI
PES
[SL:METHOD_REC
IPES recipe]
[SL:RECIPES_INCL
UDED_INGREDIEN
T dairy]]

t=2
[IN:IS_TRUE_RECI
PES
[SL:METHOD_REC
IPES recipe]
[SL:RECIPES_INCL
UDED_INGREDIEN
T dairy]]

[IN:IS_TRUE_RECIP
ES
[SL:METHOD_RECI
PES recipe]
[SL:RECIPES_INCL
UDED_INGREDIENT
dairy]]

KVRET
input:task: kvret ; where is the
closest grocery_store ;
structured knowledge: col : poi
| poi_type | address | distance |
traffic_info row 1 : pizza my
heart | pizza restaurant |
(omitted to save space) | 3
miles | moderate traffic ;
context:

t=0
whole_foods is 4
miles away at
819_alma_st.

t=1
the closest
grocery_store is
whole_foods at
819_alma_st.

t=2
the closest
grocery_store is
whole_foods which
is 4 miles away at
819_alma_st.

we are 4 miles away
from whole_foods
and from safeway:
which one do you
prefer?

Sudoku t=0 t=1 t=2,3,4

tŶ

Figure 9: Case study for CASR (row B) on WebQSP, MTOP, KVRET, and Sudoku at different
casteps. The first column shows how the input is serialized from Figure 5, Figure 6, and Figure 7.
For WebQSP, MTOP, and KVRET, keywords are highlighted with green color, and red color denotes
wrong predictions. For Sudoku, the white fields denote the blanks to be filled, the red numbers in
them denote that the predictions are wrong, and the green ones denote the correct predictions. It’s
a coincidence that the Sudoku prediction for this sample remains the same for t=2,3,4, so we draw
them together.

16

Published as a conference paper at ICLR 2023

Method WebQSP MTOP KVRET

INAT

(JOIN (R
education.education.institution) (AND
(JOIN education.education.degree).02
(JOIN educationeducation.JO3.)www.w
m.educationma02date)

and_IN: the_]ACT [] the
for:]]IN for

error iserror__
theerror__ at is
is_error___ is___..
would would is is_error
is is

Levenshtein (JOIN (R
education.education.institution) (JOIN
(R people.person.education) m.03xsv3))

_ what is for you.

CASR /Dec
(JOIN (R
education.education.institution) (JOIN
(R people.person.education) m.02mjmr))

[IN:GET_RECIPES
[SL:RECIPES_DISH
chicken]]

the nearest
grocery_store is
whole_foods at
819_alma_st. would you
like directions there?

Bidirectional
(JOIN (R
education.education.institution) (JOIN
(R people.person.education) m.02m7r))

[IN:GET_RECIPES
[SL:RECIPES_INCLUDE
D_INGREDIENT dairy]]

safeway is 4 miles away.

Progressive

(AND (JOIN
common.topic.notable_types m.01nf)
(JOIN (R
education.education.institution) (JOIN
(R people.person.education) m.02m7r)))

[IN:IS_TRUE_RECIPES
[SL:RECIPES_INCLUDE
D_INGREDIENT dairy]]

the closest grocery_store
is safeway.

CASR-L
(JOIN (R
education.education.institution) (JOIN
(R people.person.education) m.02m7r))

[IN:IS_TRUE_RECIPES
[SL:RECIPES_INCLUDE
D_INGREDIENT dairy]]

the closest grocery_store
is whole_foods at 819
alma st.

Figure 10: Case study for other experiments (baselines and CASR-L).

17

Published as a conference paper at ICLR 2023

Algorithm 1 CASR Inference Process.
Input: max castep T ; input X (from test set);

well-trained CASR models M t (0 ≤ t < T)
Output: the best prediction Ŷ for X
1: for t in 0, 1, ..., T − 1 do
2: /* argmax by beam searching */
3: if t = 0 then
4: Ŷ t← argmaxY P (Y |X,M t)
5: else
6: Ŷ t ← argmaxY

P (Y |X, Ŷ t−1,M t)
7: end if
8: end for
9: return Ŷ

Algorithm 2 CASR Training Process (§3.1).
Input: max castep T ; max epoch E;

all input X and ground truth Y
in train (St) and dev (Sd) sets

Output: CASR models M t (0 ≤ t < T);
1: for t in 0, 1, ..., T − 1 do
2: θ← parameter initialization (§3.4)
3: for e in 0, 1, ..., E − 1 do
4: /* argmax by updating θ using

train set */
5: if t = 0 then
6: θ ← argmaxθ∑

(X,Y)∈St
P (Y |X, θ)

7: else
8: θ ← argmaxθ∑

(X,Y)∈St
P (Y |X, Ŷ t−1, θ)

9: end if
10: M t

e ← θ
11: end for
12: M t ← checkpoint selection from M t

e
(0 ≤ e < E) on Sd

13: /* predict with beam searching ∀X ∈
St

⋃
Sd using M t */

14: if t = 0 then
15: Ŷ t← argmaxY P (Y |X,M t)
16: else
17: Ŷ t ← argmaxY

P (Y |X, Ŷ t−1,M t)
18: end if
19: end for
20: return M t (0 ≤ t < T)

18

	Introduction
	Related Work
	Sequence Generation Methods
	Tasks with Complex Answers

	CASR Framework
	Training Process
	Model Architecture
	Parameter Efficiency
	Initialization Strategy

	Experiments
	Experiment Setup
	Controlled Experiments
	Baseline Comparisons

	Best CASR Designs
	Analysis on Self-Boost Refinement
	Comparison with Baselines

	Empirical Studies
	Analysis on Complexity
	Analysis on Attention
	Case Studies

	Conclusion
	Examples
	Best Result Selection
	Experiment Details
	Hyperparameters
	Resource Consumption

	Detailed Results of Empirical Studies
	An Example to Compute Difficulty of Blanks

